斐波那契数与二分法的递归与非递归算法及其复杂度分析 您所在的位置:网站首页 递归与非递归时间复杂度 斐波那契数与二分法的递归与非递归算法及其复杂度分析

斐波那契数与二分法的递归与非递归算法及其复杂度分析

2023-12-12 16:29| 来源: 网络整理| 查看: 265

1. 什么是斐波那契数?

这里我借用百度百科上的解释:斐波那契数,亦称之为斐波那契数列(意大利语: Successione di Fibonacci),又称黄金分割数列、费波那西数列、费波拿契数、费氏数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=Fn-1+Fn-2(n>=2,n∈N*),用文字来说,就是斐波那契数列列由 0 和 1 开始,之后的斐波那契数列系数就由之前的两数相加。特别指出:0不是第一项,而是第零项。

在这个斐波那契数列中的数字,就被称为斐波那契数。这个级数与大自然植物的关系极为密切。几乎所有花朵的花瓣数都来自这个级数中的一项数字:菠萝表皮方块形鳞苞形成两组旋向相反的螺线,它们的条数必须是这个级数中紧邻的两个数字(如左旋8行,右旋13行);还有向日葵花盘……直到最近的1993年,人们才对这个古老而重要的级数给出真正满意的解释:此级数中任何相邻的两个数,次第相除,其比率都最为接近0.618034……这个值,它的极限就是所谓的"黄金分割数"。 2. 求第N个斐波那契数

求第N个斐波那契数比较简单可以直接套用公式n = 0,1 时,fib(n) = 1;n > =2 时,fib(n) = fib(n-2) + fib(n-1)在计算时有两种算法:递归和非递归。如下:

1 //非递归算法 2 long long fib1(size_t N) { 3 long long a = 0, b = 1, c = 0; 4 if (N < 2) { 5 return N; 6 } 7 else { 8 for (long long i = 2; i =0); 5 int left = 0; 6 int right = number-1; 7 while (right >= left) 8 { 9 int mid = (left&right) + ((left^right)>>1); 10 if (array[mid] > data) 11 { 12 right = mid - 1; 13 } 14 else if (array[mid] =left) 7 { 8 T* mid =left+(right-left)/2; 9 if (*mid == data) 10 return mid; 11 else 12 return *mid > data ? BinarySearch(left, mid - 1, data) : BinarySearch(mid + 1, right, data); 13 } 14 else 15 { 16 return NULL; 17 } 18 } 4. 时间复杂度与空间复杂度 时间复杂度:一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数f(n),进而分析f(n)随n的变化情况并确定T(n)的数量级。这里用"O"来表示数量级,给出算法的时间复杂度。       T(n)=O(f(n));                    它表示随着问题规模的n的增大,算法的执行时间的增长率和f(n)的增长率相同,这称作算法的渐进时间复杂度,简称时间复杂度。而我们一般讨论的是最坏时间复杂度,这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的上界,分析最坏的情况以估算算法指向时间的一个上界。 时间复杂度的分析方法: (1)时间复杂度就是函数中基本操作所执行的次数; (2)一般默认的是最坏时间复杂度,即分析最坏情况下所能执行的次数; (3)忽略掉常数项; (4)关注运行时间的增长趋势,关注函数式中增长最快的表达式,忽略系数; (5)计算时间复杂度是估算随着n的增长函数执行次数的增长趋势; (6)递归算法的时间复杂度为:递归总次数 * 每次递归中基本操作所执行的次数;     常用的时间复杂度有以下七种,算法时间复杂度依次增加:O(1)常数型、O(log2 n)对数型、O(n)线性型、O(nlog2n)二维型、O(n^2)平方型、O(n^3)立方型、O(2^n)指数型。 空间复杂度:   算法的空间复杂度并不是计算实际占用的空间,而是计算整个算法的辅助空间单元的个数,与问题的规模没有关系。算法的空间复杂度S(n)定义为该算法所耗费空间的数量级。   S(n)=O(f(n))  若算法执行时所需要的辅助空间相对于输入数据量n而言是一个常数,则称这个算法的辅助空间为O(1);    递归算法的空间复杂度:递归深度N*每次递归所要的辅助空间, 如果每次递归所需的辅助空间是常数,则递归的空间复杂度是 O(N)。 5. 斐波那契数的时间复杂度与空间复杂度分析 5.1 非递归算法时间复杂度分析

 使用非递归算法求到第n个斐波那契数,是从第2个数开始,将前两个数相加求求后一个数,再将后一个数赋值给前一个数,再计算前两个数相加的结果。依次类推直到第n个数,用n-1个数和n-2个数相加求出结果,这样的好处是,我们只计算了n-1次就求出了结果,即时间复杂度为O(n);我们以代码中测试数10为例详解求第十个数的过程。当N=10时,进入函数首先判断,然后走下面的分支开始计算

计算了N-1次,得出了结果所以时间复杂度是O(N)。

非递归算法空间复杂度分析此函数内部最多时一共开辟了a, b, c, i四个变量空间复杂度是常数,即为O(1)。 5.2 递归算法时间复杂度分析

在递归算法中,求解fib2(n),把它推到求解fib2(n-1)和fib2(n-2)。也就是说,为计算fib2(n),必须先计算

fib2(n-1)和fib2(n-2),而计算fib2(n-1)和fib2(n-2),时按照表达式及计算法则,需先计算又必须先计算fib2(n-1),而fib2(n-1)由fib2(n-2)和fib2(n-3)计算得来,而这之中的和fib2(n-2)由fib2(n-3)和fib2(n-4)计算得来......依次类推,表面上看不出有何复杂度,但是仔细分析可知,每一个计算fib2(n)的分支都会衍生出计算直至(1)和fib(0),也就是说每个分支都要自己计算数本身到1的斐波那契数列,这样就增加了庞大且冗杂的运算量,还是以10 为例详细计算说明

图中数字代表第N个斐波那契数,图中没有全部将计算步骤画出来,但是已经足够说明问题,它的每一步计算都被分成计算前两个斐波那契数,以此类推。那么这就形成了一颗二叉树,虽然不是满二叉树,但是我们分析的是最坏时间复杂度,而且只要估算出来递归次数随N增长的趋势即可,故可以近似将它看成满二叉树,其中的节点数就是计算的次数,也就是复杂度,由公式:节点数=2^h-1(h为树的高度)可得O(2^n)。

递归的时间复杂度是:  递归次数*每次递归中执行基本操作的次数,所以时间复杂度是: O(2^N)

递归算法空间复杂度分析:

递归最深的那一次所耗费的空间足以容纳它所有递归过程。递归产生的栈侦是要销毁的,所以空间也就释放了,要返回上一层栈侦继续计算+号后面的数,所以它所需要的空间不是一直累加起来的,之后产生的栈侦空间都小于递归最深的那一次所耗费的空间。

递归的深度*每次递归所需的辅助空间的个数 ,所以空间复杂度是:O(N)

6. 求二分法的时间复杂度和空间复杂度  6.1  非递归算法分析 分析: 假设最坏情况下,循环X次之后找到,则:2^x=n; x=logn(算法中如果没写,log默认底数为2) 循环的基本次数是log2 N,所以: 时间复杂度是O(logN); 由于辅助空间是常数级别的所以:空间复杂度是O(1); 6.2 递归算法复杂度分析 假设最坏情况下,循环X次之后找到,则:2^x=n; x=logn(算法中如果没写,log默认底数为2) 递归的次数和深度都是log2 N,每次所需要的辅助空间都是常数级别的: 时间复杂度:O(log2 N); 空间复杂度:O(log2N )。 7.  扩展-----不用循环法和递归法求1+2+3+...+N(思考一种复杂度为O(1)的解法) 1 class Temp 2 { 3 public: 4 Temp(){ 5 ++N; 6 Sum += N; 7 } 8 static void Reset(){ 9 N = 0; 10 Sum = 0; 11 } 12 static int GetSum(){ 13 return Sum; 14 } 15 private: 16 static int N; 17 static int Sum; 18 }; 19 int Temp::N = 0; 20 int Temp::Sum = 0; 21 int solution_Sum(int n){ 22 Temp::Reset(); 23 Temp *a = new Temp[n]; 24 delete[]a; 25 a = 0; 26 return Temp::GetSum(); 27 } 28 int main(){ 29 cout


【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有