用Python写《我的世界》(MC)

您所在的位置:网站首页 mc游戏我的世界 用Python写《我的世界》(MC)

用Python写《我的世界》(MC)

2024-06-19 00:17:46| 来源: 网络整理| 查看: 265

《我的世界》这款游戏相信不少人玩过,但是你有没有想过自己编写一个类似的游戏呢?

国外有位叫fogleman的开发这就利用python编写了一款与《我的世界》很相似的游戏,可以说是《我的世界》的简化版。

这个简化版的《我的世界》保留了原版的核心之一:创造。玩法与原版的创造模式基本相同只是没有物品栏与更多的方块

游戏截图:

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA5Y2D5LiH5Yir55yL5oiR,size_20,color_FFFFFF,t_70,g_se,x_16

 操控:

wasd前后移动

space跳跃

数字键选择方块

tab飞行

 

运行方法:

1.打开命令提示符,输入

pip install pyglet

2.等待pyglet安装完毕

如果出现Successfully installed说明安装成功

3.下载文件

项目源码链接:项目链接

优化过后的链接:优化后链接

提取码:z26e

 

备注:

这里提供的源码适用于python3

如果出现文件无法下载的情况

这里是源码:

主程序main.py:

--------------------

from __future__ import division

import sys import math import random import time

from collections import deque from pyglet import image from pyglet.gl import * from pyglet.graphics import TextureGroup from pyglet.window import key, mouse

# 每秒帧数 TICKS_PER_SEC = 120

# 你可以走的大小 SECTOR_SIZE =2000

# 行走速度与飞行速度 WALKING_SPEED = 5.5 FLYING_SPEED = 15

# 重力与跳跃高度 GRAVITY = 20 MAX_JUMP_HEIGHT =1

# About the height of a block. # To derive the formula for calculating jump speed, first solve #    v_t = v_0 + a * t # for the time at which you achieve maximum height, where a is the acceleration # due to gravity and v_t = 0. This gives: #    t = - v_0 / a # Use t and the desired MAX_JUMP_HEIGHT to solve for v_0 (jump speed) in #    s = s_0 + v_0 * t + (a * t^2) / 2 JUMP_SPEED = math.sqrt(2 * GRAVITY * MAX_JUMP_HEIGHT) TERMINAL_VELOCITY = 50

PLAYER_HEIGHT = 2

if sys.version_info[0] >= 3:     xrange = range

def cube_vertices(x, y, z, n):     """ Return the vertices of the cube at position x, y, z with size 2*n.

    """     return [         x-n,y+n,z-n, x-n,y+n,z+n, x+n,y+n,z+n, x+n,y+n,z-n,  # top         x-n,y-n,z-n, x+n,y-n,z-n, x+n,y-n,z+n, x-n,y-n,z+n,  # bottom         x-n,y-n,z-n, x-n,y-n,z+n, x-n,y+n,z+n, x-n,y+n,z-n,  # left         x+n,y-n,z+n, x+n,y-n,z-n, x+n,y+n,z-n, x+n,y+n,z+n,  # right         x-n,y-n,z+n, x+n,y-n,z+n, x+n,y+n,z+n, x-n,y+n,z+n,  # front         x+n,y-n,z-n, x-n,y-n,z-n, x-n,y+n,z-n, x+n,y+n,z-n,  # back     ]

def tex_coord(x, y, n=4):     """      Return the bounding vertices of the texture square.

    """     m = 1.0 / n     dx = x * m     dy = y * m     return dx, dy, dx + m, dy, dx + m, dy + m, dx, dy + m

def tex_coords(top, bottom, side):     """      Return a list of the texture squares for the top, bottom and side.

    """     top = tex_coord(*top)     bottom = tex_coord(*bottom)     side = tex_coord(*side)     result = []     result.extend(top)     result.extend(bottom)     result.extend(side * 4)     return result

TEXTURE_PATH = 'texture.png'

GRASS = tex_coords((1, 0), (0, 1), (0, 0)) SAND = tex_coords((1, 1), (1, 1), (1, 1)) BRICK = tex_coords((2, 0), (2, 0), (2, 0)) STONE = tex_coords((2, 1), (2, 1), (2, 1)) PURPLE = tex_coords((3, 1), (3, 1), (3, 1)) RED = tex_coords((3, 0), (3, 0), (3, 0)) GREEN = tex_coords((3, 2), (3, 2), (3, 2)) BLUE = tex_coords((1, 2), (1, 2), (1, 2)) BLACK = tex_coords((2, 2), (2, 2), (2, 2)) ORANGE = tex_coords((3, 2), (3, 2), (3, 2))

FACES = [     ( 0, 1, 0),     ( 0,-1, 0),     (-1, 0, 0),     ( 1, 0, 0),     ( 0, 0, 1),     ( 0, 0,-1), ]

def normalize(position):     """ Accepts `position` of arbitrary precision and returns the block     containing that position.

    Parameters     ----------     position : tuple of len 3

    Returns     -------     block_position : tuple of ints of len 3

    """     x, y, z = position     x, y, z = (int(round(x)), int(round(y)), int(round(z)))     return (x, y, z)

def sectorize(position):     """ Returns a tuple representing the sector for the given `position`.

    Parameters     ----------     position : tuple of len 3

    Returns     -------     sector : tuple of len 3

    """     x, y, z = normalize(position)     x, y, z = x // SECTOR_SIZE, y // SECTOR_SIZE, z // SECTOR_SIZE     return (x, 0, z)

class Model(object):

    def __init__(self):

        # A Batch is a collection of vertex lists for batched rendering.         self.batch = pyglet.graphics.Batch()

        # A TextureGroup manages an OpenGL texture.         self.group = TextureGroup(image.load(TEXTURE_PATH).get_texture())

        # A mapping from position to the texture of the block at that position.         # This defines all the blocks that are currently in the world.         self.world = {}

        # Same mapping as `world` but only contains blocks that are shown.         self.shown = {}

        # Mapping from position to a pyglet `VertextList` for all shown blocks.         self._shown = {}

        # Mapping from sector to a list of positions inside that sector.         self.sectors = {}

        # Simple function queue implementation. The queue is populated with         # _show_block() and _hide_block() calls         self.queue = deque()

        self._initialize()

    def _initialize(self):         """ Initialize the world by placing all the blocks.

        """         n = 200 # 1/2 width and height of world         s = 1  # step size         y =0   # initial y height         for x in xrange(-n, n + 1, s):             for z in xrange(-n, n + 1, s):                 # create a layer stone an grass everywhere.                 self.add_block((x, y - 2, z), GRASS, immediate=False)                 self.add_block((x, y - 3, z), STONE, immediate=False)                 if x in (-n, n) or z in (-n, n):                     # create outer walls.                     for dy in xrange(-2, 3):                         self.add_block((x, y + dy, z), STONE, immediate=False)

        # generate the hills randomly         o = n -15         for _ in xrange(120):             a = random.randint(-o, o)  # x position of the hill             b = random.randint(-o, o)  # z position of the hill             c = -1  # base of the hill             h = random.randint(2,6) # height of the hill             s = random.randint(4,12)  # 2 * s is the side length of the hill             d = 1  # how quickly to taper off the hills             t = random.choice([GRASS, SAND,STONE])             for y in xrange(c, c + h):                 for x in xrange(a - s, a + s + 1):                     for z in xrange(b - s, b + s + 1):                         if (x - a) ** 2 + (z - b) ** 2 > (s + 1) ** 2:                             continue                         if (x - 0) ** 2 + (z - 0) ** 2 < 5 ** 2:                             continue                         self.add_block((x, y, z), t, immediate=False)                 s -= d  # decrement side lenth so hills taper off

    def hit_test(self, position, vector, max_distance=8):         """ Line of sight search from current position. If a block is         intersected it is returned, along with the block previously in the line         of sight. If no block is found, return None, None.

        Parameters         ----------         position : tuple of len 3             The (x, y, z) position to check visibility from.         vector : tuple of len 3             The line of sight vector.         max_distance : int             How many blocks away to search for a hit.

        """         m = 8         x, y, z = position         dx, dy, dz = vector         previous = None         for _ in xrange(max_distance * m):             key = normalize((x, y, z))             if key != previous and key in self.world:                 return key, previous             previous = key             x, y, z = x + dx / m, y + dy / m, z + dz / m         return None, None

    def exposed(self, position):         """ Returns False is given `position` is surrounded on all 6 sides by         blocks, True otherwise.

        """         x, y, z = position         for dx, dy, dz in FACES:             if (x + dx, y + dy, z + dz) not in self.world:                 return True         return False

    def add_block(self, position, texture, immediate=True):         """ Add a block with the given `texture` and `position` to the world.

        Parameters         ----------         position : tuple of len 3             The (x, y, z) position of the block to add.         texture : list of len 3             The coordinates of the texture squares. Use `tex_coords()` to             generate.         immediate : bool             Whether or not to draw the block immediately.

        """         if position in self.world:             self.remove_block(position, immediate)         self.world[position] = texture         self.sectors.setdefault(sectorize(position), []).append(position)         if immediate:             if self.exposed(position):                 self.show_block(position)             self.check_neighbors(position)

    def remove_block(self, position, immediate=True):         """ Remove the block at the given `position`.

        Parameters         ----------         position : tuple of len 3             The (x, y, z) position of the block to remove.         immediate : bool             Whether or not to immediately remove block from canvas.

        """         del self.world[position]         self.sectors[sectorize(position)].remove(position)         if immediate:             if position in self.shown:                 self.hide_block(position)             self.check_neighbors(position)

    def check_neighbors(self, position):         """ Check all blocks surrounding `position` and ensure their visual         state is current. This means hiding blocks that are not exposed and         ensuring that all exposed blocks are shown. Usually used after a block         is added or removed.

        """         x, y, z = position         for dx, dy, dz in FACES:             key = (x + dx, y + dy, z + dz)             if key not in self.world:                 continue             if self.exposed(key):                 if key not in self.shown:                     self.show_block(key)             else:                 if key in self.shown:                     self.hide_block(key)

    def show_block(self, position, immediate=True):         """ Show the block at the given `position`. This method assumes the         block has already been added with add_block()

        Parameters         ----------         position : tuple of len 3             The (x, y, z) position of the block to show.         immediate : bool             Whether or not to show the block immediately.

        """         texture = self.world[position]         self.shown[position] = texture         if immediate:             self._show_block(position, texture)         else:             self._enqueue(self._show_block, position, texture)

    def _show_block(self, position, texture):         """ Private implementation of the `show_block()` method.

        Parameters         ----------         position : tuple of len 3             The (x, y, z) position of the block to show.         texture : list of len 3             The coordinates of the texture squares. Use `tex_coords()` to             generate.

        """         x, y, z = position         vertex_data = cube_vertices(x, y, z, 0.5)         texture_data = list(texture)         # create vertex list         # FIXME Maybe `add_indexed()` should be used instead         self._shown[position] = self.batch.add(24, GL_QUADS, self.group,             ('v3f/static', vertex_data),             ('t2f/static', texture_data))

    def hide_block(self, position, immediate=True):         """ Hide the block at the given `position`. Hiding does not remove the         block from the world.

        Parameters         ----------         position : tuple of len 3             The (x, y, z) position of the block to hide.         immediate : bool             Whether or not to immediately remove the block from the canvas.

        """         self.shown.pop(position)         if immediate:             self._hide_block(position)         else:             self._enqueue(self._hide_block, position)

    def _hide_block(self, position):         """ Private implementation of the 'hide_block()` method.

        """         self._shown.pop(position).delete()

    def show_sector(self, sector):         """ Ensure all blocks in the given sector that should be shown are         drawn to the canvas.

        """         for position in self.sectors.get(sector, []):             if position not in self.shown and self.exposed(position):                 self.show_block(position, False)

    def hide_sector(self, sector):         """ Ensure all blocks in the given sector that should be hidden are         removed from the canvas.

        """         for position in self.sectors.get(sector, []):             if position in self.shown:                 self.hide_block(position, False)

    def change_sectors(self, before, after):         """ Move from sector `before` to sector `after`. A sector is a         contiguous x, y sub-region of world. Sectors are used to speed up         world rendering.

        """         before_set = set()         after_set = set()         pad = 4         for dx in xrange(-pad, pad + 1):             for dy in [0]:  # xrange(-pad, pad + 1):                 for dz in xrange(-pad, pad + 1):                     if dx ** 2 + dy ** 2 + dz ** 2 > (pad + 1) ** 2:                         continue                     if before:                         x, y, z = before                         before_set.add((x + dx, y + dy, z + dz))                     if after:                         x, y, z = after                         after_set.add((x + dx, y + dy, z + dz))         show = after_set - before_set         hide = before_set - after_set         for sector in show:             self.show_sector(sector)         for sector in hide:             self.hide_sector(sector)

    def _enqueue(self, func, *args):         """ Add `func` to the internal queue.

        """         self.queue.append((func, args))

    def _dequeue(self):         """ Pop the top function from the internal queue and call it.

        """         func, args = self.queue.popleft()         func(*args)

    def process_queue(self):         """ Process the entire queue while taking periodic breaks. This allows         the game loop to run smoothly. The queue contains calls to         _show_block() and _hide_block() so this method should be called if         add_block() or remove_block() was called with immediate=False

        """         start = time.time         while self.queue and time.time < 1 / TICKS_PER_SEC:             self._dequeue()

    def process_entire_queue(self):         """ Process the entire queue with no breaks.

        """         while self.queue:             self._dequeue()

class Window(pyglet.window.Window):

    def __init__(self, *args, **kwargs):         super(Window, self).__init__(*args, **kwargs)

        # Whether or not the window exclusively captures the mouse.         self.exclusive = False

        # When flying gravity has no effect and speed is increased.         self.flying = False

        # Strafing is moving lateral to the direction you are facing,         # e.g. moving to the left or right while continuing to face forward.         #         # First element is -1 when moving forward, 1 when moving back, and 0         # otherwise. The second element is -1 when moving left, 1 when moving         # right, and 0 otherwise.         self.strafe = [0, 0]

        # Current (x, y, z) position in the world, specified with floats. Note         # that, perhaps unlike in math class, the y-axis is the vertical axis.         self.position = (0, 0, 0)

        # First element is rotation of the player in the x-z plane (ground         # plane) measured from the z-axis down. The second is the rotation         # angle from the ground plane up. Rotation is in degrees.         #         # The vertical plane rotation ranges from -90 (looking straight down) to         # 90 (looking straight up). The horizontal rotation range is unbounded.         self.rotation = (0, 0)

        # Which sector the player is currently in.         self.sector = None

        # The crosshairs at the center of the screen.         self.reticle = None

        # Velocity in the y (upward) direction.         self.dy = 0

        # A list of blocks the player can place. Hit num keys to cycle.         self.inventory = [BRICK, GRASS, SAND,STONE,RED,PURPLE,GREEN,BLUE,BLACK,ORANGE]

        # The current block the user can place. Hit num keys to cycle.         self.block = self.inventory[0]

        # Convenience list of num keys.         self.num_keys = [             key._1, key._2, key._3, key._4, key._5,             key._6, key._7, key._8, key._9, key._0,key.E,key.R]

        # Instance of the model that handles the world.         self.model = Model()

        # The label that is displayed in the top left of the canvas.         self.label = pyglet.text.Label('', font_name='Arial', font_size=18,             x=10, y=self.height - 10, anchor_x='left', anchor_y='top',             color=(0, 0, 0, 255))

        # This call schedules the `update()` method to be called         # TICKS_PER_SEC. This is the main game event loop.         pyglet.clock.schedule_interval(self.update, 1.0 / TICKS_PER_SEC)

    def set_exclusive_mouse(self, exclusive):         """ If `exclusive` is True, the game will capture the mouse, if False         the game will ignore the mouse.

        """         super(Window, self).set_exclusive_mouse(exclusive)         self.exclusive = exclusive

    def get_sight_vector(self):         """ Returns the current line of sight vector indicating the direction         the player is looking.

        """         x, y = self.rotation         # y ranges from -90 to 90, or -pi/2 to pi/2, so m ranges from 0 to 1 and         # is 1 when looking ahead parallel to the ground and 0 when looking         # straight up or down.         m = math.cos(math.radians(y))         # dy ranges from -1 to 1 and is -1 when looking straight down and 1 when         # looking straight up.         dy = math.sin(math.radians(y))         dx = math.cos(math.radians(x - 90)) * m         dz = math.sin(math.radians(x - 90)) * m         return (dx, dy, dz)

    def get_motion_vector(self):         """ Returns the current motion vector indicating the velocity of the         player.

        Returns         -------         vector : tuple of len 3             Tuple containing the velocity in x, y, and z respectively.

        """         if any(self.strafe):             x, y = self.rotation             strafe = math.degrees(math.atan2(*self.strafe))             y_angle = math.radians(y)             x_angle = math.radians(x + strafe)             if self.flying:                 m = math.cos(y_angle)                 dy = math.sin(y_angle)                 if self.strafe[1]:                     # Moving left or right.                     dy = 0.0                     m = 1                 if self.strafe[0] > 0:                     # Moving backwards.                     dy *= -1                 # When you are flying up or down, you have less left and right                 # motion.                 dx = math.cos(x_angle) * m                 dz = math.sin(x_angle) * m             else:                 dy = 0.0                 dx = math.cos(x_angle)                 dz = math.sin(x_angle)         else:             dy = 0.0             dx = 0.0             dz = 0.0         return (dx, dy, dz)

    def update(self, dt):         """ This method is scheduled to be called repeatedly by the pyglet         clock.

        Parameters         ----------         dt : float             The change in time since the last call.

        """         self.model.process_queue()         sector = sectorize(self.position)         if sector != self.sector:             self.model.change_sectors(self.sector, sector)             if self.sector is None:                 self.model.process_entire_queue()             self.sector = sector         m = 8         dt = min(dt, 0.2)         for _ in xrange(m):             self._update(dt / m)

    def _update(self, dt):         """ Private implementation of the `update()` method. This is where most         of the motion logic lives, along with gravity and collision detection.

        Parameters         ----------         dt : float             The change in time since the last call.

        """         # walking         speed = FLYING_SPEED if self.flying else WALKING_SPEED         d = dt * speed # distance covered this tick.         dx, dy, dz = self.get_motion_vector()         # New position in space, before accounting for gravity.         dx, dy, dz = dx * d, dy * d, dz * d         # gravity         if not self.flying:             # Update your vertical speed: if you are falling, speed up until you             # hit terminal velocity; if you are jumping, slow down until you             # start falling.             self.dy -= dt * GRAVITY             self.dy = max(self.dy, -TERMINAL_VELOCITY)             dy += self.dy * dt         # collisions         x, y, z = self.position         x, y, z = self.collide((x + dx, y + dy, z + dz), PLAYER_HEIGHT)         self.position = (x, y, z)

    def collide(self, position, height):         """ Checks to see if the player at the given `position` and `height`         is colliding with any blocks in the world.

        Parameters         ----------         position : tuple of len 3             The (x, y, z) position to check for collisions at.         height : int or float             The height of the player.

        Returns         -------         position : tuple of len 3             The new position of the player taking into account collisions.

        """         # How much overlap with a dimension of a surrounding block you need to         # have to count as a collision. If 0, touching terrain at all counts as         # a collision. If .49, you sink into the ground, as if walking through         # tall grass. If >= .5, you'll fall through the ground.         pad = 0         p = list(position)         np = normalize(position)         for face in FACES:  # check all surrounding blocks             for i in xrange(3):  # check each dimension independently                 if not face[i]:                     continue                 # How much overlap you have with this dimension.                 d = (p[i] - np[i]) * face[i]                 if d < pad:                     continue                 for dy in xrange(height):  # check each height                     op = list(np)                     op[1] -= dy                     op[i] += face[i]                     if tuple(op) not in self.model.world:                         continue                     p[i] -= (d - pad) * face[i]                     if face == (0, -1, 0) or face == (0, 1, 0):                         # You are colliding with the ground or ceiling, so stop                         # falling / rising.                         self.dy = 0                     break         return tuple(p)

    def on_mouse_press(self, x, y, button, modifiers):         """ Called when a mouse button is pressed. See pyglet docs for button         amd modifier mappings.

        Parameters         ----------         x, y : int             The coordinates of the mouse click. Always center of the screen if             the mouse is captured.         button : int             Number representing mouse button that was clicked. 1 = left button,             4 = right button.         modifiers : int             Number representing any modifying keys that were pressed when the             mouse button was clicked.

        """         if self.exclusive:             vector = self.get_sight_vector()             block, previous = self.model.hit_test(self.position, vector)             if (button == mouse.RIGHT) or \                     ((button == mouse.LEFT) and (modifiers & key.MOD_CTRL)):                 # ON OSX, control + left click = right click.                 if previous:                     self.model.add_block(previous, self.block)             elif button == pyglet.window.mouse.LEFT and block:                 texture = self.model.world[block]                 self.model.remove_block(block)         else:             self.set_exclusive_mouse(True)

    def on_mouse_motion(self, x, y, dx, dy):         """ Called when the player moves the mouse.

        Parameters         ----------         x, y : int             The coordinates of the mouse click. Always center of the screen if             the mouse is captured.         dx, dy : float             The movement of the mouse.

        """         if self.exclusive:             m = 0.15             x, y = self.rotation             x, y = x + dx * m, y + dy * m             y = max(-90, min(90, y))             self.rotation = (x, y)

    def on_key_press(self, symbol, modifiers):         """ Called when the player presses a key. See pyglet docs for key         mappings.

        Parameters         ----------         symbol : int             Number representing the key that was pressed.         modifiers : int             Number representing any modifying keys that were pressed.

        """         if symbol == key.W:             self.strafe[0] -= 1         elif symbol == key.S:             self.strafe[0] += 1         elif symbol == key.A:             self.strafe[1] -= 1         elif symbol == key.D:             self.strafe[1] += 1         elif symbol == key.SPACE:             if self.dy == 0:                 self.dy = JUMP_SPEED         elif symbol == key.ESCAPE:             self.set_exclusive_mouse(False)         elif symbol == key.TAB:             self.flying = not self.flying         elif symbol in self.num_keys:             index = (symbol - self.num_keys[0]) % len(self.inventory)             self.block = self.inventory[index]

    def on_key_release(self, symbol, modifiers):         """ Called when the player releases a key. See pyglet docs for key         mappings.

        Parameters         ----------         symbol : int             Number representing the key that was pressed.         modifiers : int             Number representing any modifying keys that were pressed.

        """         if symbol == key.W:             self.strafe[0] += 1         elif symbol == key.S:             self.strafe[0] -= 1         elif symbol == key.A:             self.strafe[1] += 1         elif symbol == key.D:             self.strafe[1] -= 1

    def on_resize(self, width, height):         """ Called when the window is resized to a new `width` and `height`.

        """         # label         self.label.y = height - 10         # reticle         if self.reticle:             self.reticle.delete()         x, y = self.width // 2, self.height // 2         n = 10         self.reticle = pyglet.graphics.vertex_list(4,             ('v2i', (x - n, y, x + n, y, x, y - n, x, y + n))         )

    def set_2d(self):         """ Configure OpenGL to draw in 2d.

        """         width, height = self.get_size()         glDisable(GL_DEPTH_TEST)         viewport = self.get_viewport_size()         glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))         glMatrixMode(GL_PROJECTION)         glLoadIdentity()         glOrtho(0, max(1, width), 0, max(1, height), -1, 1)         glMatrixMode(GL_MODELVIEW)         glLoadIdentity()

    def set_3d(self):         """ Configure OpenGL to draw in 3d.

        """         width, height = self.get_size()         glEnable(GL_DEPTH_TEST)         viewport = self.get_viewport_size()         glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))         glMatrixMode(GL_PROJECTION)         glLoadIdentity()         gluPerspective(65.0, width / float(height), 0.1, 60.0)         glMatrixMode(GL_MODELVIEW)         glLoadIdentity()         x, y = self.rotation         glRotatef(x, 0, 1, 0)         glRotatef(-y, math.cos(math.radians(x)), 0, math.sin(math.radians(x)))         x, y, z = self.position         glTranslatef(-x, -y, -z)

    def on_draw(self):         """ Called by pyglet to draw the canvas.

        """         self.clear()         self.set_3d()         glColor3d(1, 1, 1)         self.model.batch.draw()         self.draw_focused_block()         self.set_2d()         self.draw_label()         self.draw_reticle()

    def draw_focused_block(self):         """ Draw black edges around the block that is currently under the         crosshairs.

        """         vector = self.get_sight_vector()         block = self.model.hit_test(self.position, vector)[0]         if block:             x, y, z = block             vertex_data = cube_vertices(x, y, z, 0.51)             glColor3d(0, 0, 0)             glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)             pyglet.graphics.draw(24, GL_QUADS, ('v3f/static', vertex_data))             glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)

    def draw_label(self):         """ Draw the label in the top left of the screen.

        """         x, y, z = self.position         self.label.text = '%02d (%.2f, %.2f, %.2f) %d / %d' % (             pyglet.clock.get_fps(), x, y, z,             len(self.model._shown), len(self.model.world))         self.label.draw()

    def draw_reticle(self):         """ Draw the crosshairs in the center of the screen.

        """         glColor3d(0, 0, 0)         self.reticle.draw(GL_LINES)

def setup_fog():     """ Configure the OpenGL fog properties.

    """     # Enable fog. Fog "blends a fog color with each rasterized pixel fragment's     # post-texturing color."     glEnable(GL_FOG)     # Set the fog color.     glFogfv(GL_FOG_COLOR, (GLfloat * 4)(0.5, 0.69, 1.0, 0))     # Say we have no preference between rendering speed and quality.     glHint(GL_FOG_HINT, GL_DONT_CARE)     # Specify the equation used to compute the blending factor.     glFogi(GL_FOG_MODE, GL_LINEAR)     # How close and far away fog starts and ends. The closer the start and end,     # the denser the fog in the fog range.     glFogf(GL_FOG_START, 20.0)     glFogf(GL_FOG_END, 60.0)

def setup():     """ Basic OpenGL configuration.

    """     # Set the color of "clear", i.e. the sky, in rgba.     glClearColor(0.5, 0.69, 1.0, 1)     # Enable culling (not rendering) of back-facing facets -- facets that aren't     # visible to you.     glEnable(GL_CULL_FACE)     # Set the texture minification/magnification function to GL_NEAREST (nearest     # in Manhattan distance) to the specified texture coordinates. GL_NEAREST     # "is generally faster than GL_LINEAR, but it can produce textured images     # with sharper edges because the transition between texture elements is not     # as smooth."     glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST)     glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST)     setup_fog()

def main():     window = Window(width=800, height=450, caption='Pyglet', resizable=True)     # Hide the mouse cursor and prevent the mouse from leaving the window.     window.set_exclusive_mouse(True)     setup()     pyglet.app.run()

if __name__ == '__main__':     main()

--------------------

图片texture.png:

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA5Y2D5LiH5Yir55yL5oiR,size_7,color_FFFFFF,t_70,g_se,x_16

 



【本文地址】

公司简介

联系我们

今日新闻


点击排行

实验室常用的仪器、试剂和
说到实验室常用到的东西,主要就分为仪器、试剂和耗
不用再找了,全球10大实验
01、赛默飞世尔科技(热电)Thermo Fisher Scientif
三代水柜的量产巅峰T-72坦
作者:寞寒最近,西边闹腾挺大,本来小寞以为忙完这
通风柜跟实验室通风系统有
说到通风柜跟实验室通风,不少人都纠结二者到底是不
集消毒杀菌、烘干收纳为一
厨房是家里细菌较多的地方,潮湿的环境、没有完全密
实验室设备之全钢实验台如
全钢实验台是实验室家具中较为重要的家具之一,很多

推荐新闻


图片新闻

实验室药品柜的特性有哪些
实验室药品柜是实验室家具的重要组成部分之一,主要
小学科学实验中有哪些教学
计算机 计算器 一般 打孔器 打气筒 仪器车 显微镜
实验室各种仪器原理动图讲
1.紫外分光光谱UV分析原理:吸收紫外光能量,引起分
高中化学常见仪器及实验装
1、可加热仪器:2、计量仪器:(1)仪器A的名称:量
微生物操作主要设备和器具
今天盘点一下微生物操作主要设备和器具,别嫌我啰嗦
浅谈通风柜使用基本常识
 众所周知,通风柜功能中最主要的就是排气功能。在

专题文章

    CopyRight 2018-2019 实验室设备网 版权所有 win10的实时保护怎么永久关闭