电场强度通量的高斯定理 您所在的位置:网站首页 高斯面的电荷量怎么求 电场强度通量的高斯定理

电场强度通量的高斯定理

2024-06-02 09:46| 来源: 网络整理| 查看: 265

阅读这篇前推荐优先阅读高数中的高斯公式。 该篇参考《电动力学》郭硕洪第三版第一章第二节。 通过闭合曲面 S S S的电场强度 E ⃗ \vec{E} E 的通量定义为面积分: ∮ s E ⃗ ⋅ d S ⃗ (1) \oint_{s}\vec{E}\cdot\mathrm{d}\vec{S} \tag{1} ∮s​E ⋅dS (1) 由库仑定律可以推出 关于电场强度通量的高斯定理: ∮ s E ⃗ ⋅ d S ⃗ = Q ϵ 0 (2) \oint_{s}\vec{E}\cdot\mathrm{d}\vec{S}=\frac{\textbf{Q}}{\epsilon_0} \tag{2} ∮s​E ⋅dS =ϵ0​Q​(2) 其中 Q = ∑ i Q i \textbf{Q}=\sum_i Q_i Q=∑i​Qi​,表示闭合曲面 S S S所围成的区域内的所有电荷量。 因此进一步我们可以将等式 ( 2 ) \left(2\right) (2)写为: ∮ s E ⃗ ⋅ d S ⃗ = 1 ϵ 0 ∑ i Q i (3) \oint_{s}\vec{E}\cdot\mathrm{d}\vec{S}=\frac{1}{\epsilon_0}\sum_i Q_i \tag{3} ∮s​E ⋅dS =ϵ0​1​i∑​Qi​(3) 不知道有没有小伙伴会和我有同样的疑问,为什么这个公式会被称为电场强度通量的高斯定理呢?接下来我们来说明一下这个问题。

因为等式 ( 2 ) \left(2\right) (2)推导时的右侧部分是通过体积分得到的,对应于数学上的高斯定理,就是将面积分与体积分联系起来的公式,因此这里我们说 ( 2 ) \left(2\right) (2)表示的时电磁场强度通量的高斯定理。

进一步,如果我们将等式 ( 3 ) \left(3\right) (3)的右侧电荷替换为积分形式,那么我们可以电场高斯定理的积分形式。 ∮ s E ⃗ ⋅ d S ⃗ = 1 ϵ 0 ∭ v ρ d V (4) \oint_{s}\vec{E}\cdot\mathrm{d}\vec{S}=\frac{1}{\epsilon_0}\iiint_v \rho \mathrm{d}V \tag{4} ∮s​E ⋅dS =ϵ0​1​∭v​ρdV(4) 如果我们使用数学上的高斯定理,那么我们可以将等式 ( 4 ) \left(4\right) (4)的左侧替换为: ∮ s E ⃗ ⋅ d S ⃗ = ∭ v ∇ ⋅ E ⃗ d V (5) \oint_{s}\vec{E}\cdot\mathrm{d}\vec{S}= \iiint_v \nabla \cdot \vec{E} \mathrm{d}V \tag{5} ∮s​E ⋅dS =∭v​∇⋅E dV(5) 结合等式 ( 4 ) \left(4\right) (4)与等式 ( 5 ) \left(5\right) (5),我们可以得到电场高斯定理的微分形式: 1 ϵ 0 ∭ v ρ d V = ∭ v ∇ ⋅ E ⃗ d V (6) \frac{1}{\epsilon_0}\iiint_v \rho \mathrm{d}V= \iiint_v \nabla \cdot \vec{E} \mathrm{d}V \tag{6} ϵ0​1​∭v​ρdV=∭v​∇⋅E dV(6) ∇ ⋅ E ⃗ = ρ ϵ 0 (7) \nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0} \tag{7} ∇⋅E =ϵ0​ρ​(7) 等式 ( 7 ) \left(7\right) (7)即为电场高斯定理的微分形式。

如果大家觉得有用,就请点个赞吧~



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有