计算n阶乘中尾部零的个数 您所在的位置:网站首页 计算整数n的阶乘并输出 计算n阶乘中尾部零的个数

计算n阶乘中尾部零的个数

2024-04-06 17:33| 来源: 网络整理| 查看: 265

写在前面

本来觉得问题挺容易的,不打算记录,谁知道一不小心,还真没做出来。最终凭借“朴实”的算法思想解决了问题,但是其中的曲折还真是汗颜。科学的思维指导确实必不可少,“野路子”的朴素的战斗理论不论是效率还是后续的算法演进都经不起考验。

这里只是记录一下自己最近两天对此问题的一些想法,目前只能说是解决了问题,并且满足题目要求。据说问题来自《编程之美》,以后刷书本的时候看到原题,如果需要补充的话,再来更新。

And,开始吧~

正文 题目

设计一个算法,计算出n阶乘中尾部零的个数 样例 11! = 39916800,因此应该返回 2 挑战 O(logN)的时间复杂度

题目分析

先说结论,此问题大致有三种思路:第一种算出结果,然后查看末尾的0的个数,效果非常差;第二种,加法操作,从5开始,每次进5,然后判断,效果达不到O(logN);第三种,每次除5,多次之后结束。 详情如下。

重点分析在算法2和算法3,需要的可以直接跳到这部分查看。

算法1:最朴素

面对此问题,第一反应是直接计算结果:11!=39916800,然后设计程序判断末尾的0的个数,很简单就可以实现。 但是相应的会有很多的问题: 1、计算阶乘的开销 现在只是11的阶乘,都已经很大了,如果是5555550000000的阶乘呢?按照程序的计算结果,末尾会有1388887499996个0,计算开销很值得考虑。 2、溢出 按照上面的介绍,5555550000000的阶乘有1388887499996个0,那么可以推知阶乘的结果会是很大的一个整数,肯定会超出long类型的界限,结果会溢出。这样还要考虑处理溢出问题,又是另一个问题。 3、效率 算法2会涉及到效率问题,会发现即使是算法2也会出现计算时间超出要求的问题,那么更为“朴素”的算法1效率更是可想而知了。 因此,算法1,舍弃。

算法2:以5为迭代步数 算法2分析

仔细的考虑问题,会发现末尾出现的0是10或10的倍数相乘的结果,而10其实是5与偶数相乘。也就是,最终结果中末尾出现的0是5、10、15、20、25…自身或与偶数相乘之后的产生的。下面可以分为偶数和5的倍数分析。

首先考虑偶数。 考虑2的幂次项2、4、8…中的2的个数,发现2的幂指数的增长速度远比5的幂指数增长的快,更不用说其他的普通偶数6、12、14…。因此可以认为有足够的偶数与奇数形式的5的倍数相乘产生足够的0。所以我们后面只考虑5的倍数。

接着考虑5的倍数。

1、2、3、4、5、6、7、8、9、10、11...

其实1、2、3、4、6、7…都是可以不用考虑的,因此选择以5为迭代步数即可。 首先,这些数字都可以不用进行%5(对5取余数)运算,因此每次循环时可以直接将函数的count变量直接加1。其次,考虑25、125、625…等5的幂次项,因为他们每一个都可以在与偶数相乘之后产生多个0。因此,设置一个循环体,判断是多少幂次项,并将结果加进count。 综上所述,可以编写代码如下:

算法2代码 public class Solution { /* * param n: As desciption return: An integer, denote the number of trailing * zeros in n! */ public long trailingZeros(long n) { // write your code here long count = 0; long pwr = 25; for (long temp = 5; temp public static void main(String args[]){ Solution s=new Solution(); long result=s.trailingZeros(11); System.out.println(result); } }

因为11不超过int类型的最大长度,所以并不会报错。但是如果是5555550000000,则会报错:

The literal 5555550000000 of type int is out of range

将数值进行强制类型转换也不行:long inNum=(long)5555550000000;。 一种解决方法是使用Scanner直接读取数值。 改进后的代码如下:

public class Test{ public static void main(String args[]){ Solution s=new Solution(); Scanner scanner=new Scanner(System.in); long result=s.trailingZeros(scanner.nextLong()); System.out.println(result); } }

这时输入5555550000000则不会报错。 另外,如果需要的话,可使用System.currentTimeMillis();观察代码执行时间。

小结

从最终的代码来看,问题是挺简单的。之所以折腾这么久都没有切入要害,直接做到真正的时间复杂度为O(logN)的效果,个人觉得是因为从分析题目的时候就没有真正理解O(logN)的真正含义。 类似于二叉搜索树,从根节点开始比较,比根节点小则与左子树比较,比根节点大则与右子树比较,相等或到达叶子节点则退出。如此循环迭代。 每次判断后,下一次可搜索的数据量均为上一次的1/2,如此循环复杂度为O(logN)。

反思

遇到错误和不足就要反思,吸取教训。正视自己的缺点。

下面是个人吐槽时间,吃瓜子的观众可以有序退场了。

应该来讲,本题的最终目的是要做到O(logN)。分析题目的时候从O(logN)着手分析可能会是更好的方法。从科学的、有章可循的理论出发,作为指导思想,结合之前的例子(二叉搜索树),举一反三,解决本问题不是难事。 但是反过来,采用“朴素”方法,依靠个人经验,观察算法规律,然后解决问题。一个不行再去观察思考尝试下一种方法,虽然也是一种解决问题的思路,但如果想要在此基础上做到有章可循的逐步演进,怕是困难得多。 更何况如果观察不出规律呢?

理论&实践

先分析理论然后落实到实践,还是先动手做,再结合/总结升华出理论,值得推敲。 理论&实践 理性思考有助于身体健康,切记切记。与君共勉。



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有