指数与指数幂的运算五篇 您所在的位置:网站首页 特殊指数函数运算法则 指数与指数幂的运算五篇

指数与指数幂的运算五篇

2023-03-18 16:47| 来源: 网络整理| 查看: 265

指数与指数幂的运算篇1

二、重点、难点分析

本节教学的重点是幂的乘方与积的乘方法则的理解与掌握,难点是法则的灵活运用.

1.幂的乘方

幂的乘方,底数不变,指数相乘,即

(都是正整数)

幂的乘方

的推导是根据乘方的意义和同底数幂的乘法性质.

幂的乘方不能和同底数幂的乘法相混淆,例如不能把的结果错误地写成,也不能把的计算结果写成.

幂的乘方是变乘方为(底数不变,指数相乘的)乘法,如;而同底数幂的乘法是变(同底数的幂)乘为(幂指数)加,如.

2.积和乘方

积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.即

(为正整数).

三个或三个以上的积的乘方,也具有这一性质.例如:

3.不要把幂的乘方性质与同底数幂的乘法性质混淆.幂的乘方运算,是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变).

4.同底数幂的乘法、幂的乘方、积的乘方的三个运算性质是整式乘法的基础,也是整式乘法的主要依据.对三个性质的数学表达式和语言表述,不仅要记住,更重要的是理解.在这三个幂的运算中,要防止符号错误:例如,;还要防止运算性质发生混淆:等等.

三、教法建议

1.幂的乘方导出的根据是乘方的意义和同底数幂的乘法性质.教学时,也要注意导出这一性质的过程.可先以具体指数为例,明确幕的乘方的意义,导出性质,如

对于从指数连加得到指数相乘,要根据学生情况多作一些说明.以为例,再一次说明

可以写成.这一点是导出幂的乘方性质的关键,务必使学生真正理解.在此基础上再导出性质.

2.使学生要严格区分同底数幂乘法性质与幂的乘方性质的不同,不能混淆.具体讲解可从下面两点来说明:

(1)牢记不同的运算要使用不同的性质,运算的意义决定了运算的性质.

(2)记清幂的运算与指数运算的关系:

(同底)幂相乘指数相加(“乘”变“加”,降一级运算);

幂乘方指数相乘(“乘方”变“乘法”,降一级运算).

了解到有关幂的两个重要性质都有“使原运算仅降一级运算”的规律,可使自己更好掌握有关性质.

3.在教学的各个环节中,注意启发学生,不仅掌握法则,还要明确为什么.三种运算法则全讲完之后,学生最易产生法则间的混淆,为了解决这个问题除叫学生熟记法则之外,在学生回答问题和写作业时,注意解题步骤,或及时发现问题,说明出现问题的原因;要注意防止两个错误:

(1)(-2xy)4=-24x4y4.

(2)(x+y)3=x3+y3.

幂的乘方与积的乘方(一)

一、教学目标

1.理解幂的乘方性质并能应用它进行有关计算.

2.通过推导性质培养学生的抽象思维能力.

3.通过运用性质,培养学生综合运用知识的能力.

4.培养学生严谨的学习态度以及勇于创新的精神.

5.渗透数学公式的结构美、和谐美.

二、学法引导

1.教学方法:引导发现法、尝试指导法.

2.学生学法:关键是准确理解幂的乘方公式的意义,只有准确地判别出其适用的条件,才可以较容易地应用公式解题.

三、重点·难点及解决办法

(-)重点

准确掌握幂的乘方法则及其应用.

(二)难点

同底数幂的乘法和幂的乘方的综合应用.

(三)解决办法

在解题的过程中,运用对比的方法让学生感受、理解公式的联系与区别.

四、课时安排

一课时.

五、教具学具准备

投影仪、胶片.

六、师生互动活动设计

1.复习同底数幂乘法法则并进行、的计算,从而引入新课,在探究规律的过程中,得出幂的乘方公式,并加以充分的理解.

2.教师举例进行示范,师生共练以熟悉幂的乘方性质.

3.设计错例辨析和练习,通过不同的题型,从不同的角度加深对公式的理解.

七、教学步骤

(-)明确目标

本节课重点是掌握幂的乘方运算性质并能进行较灵活的应用

(二)整体感知

幂的乘方法则的应用关键是判断准其适用的条件和形式.

(三)教学过程

1.复习引入

(1)叙述同底数幂乘法法则并用字母表示.

(2)计算:①②

2.探索新知,讲授新课

(1)引入新课:计算和和

提问学生式子、的意义,启发学生把幂的乘方转化为同底数暴的乘法.计算过程按课本,并注明每步计算的根据.

观察题目和结论:

推测幂的乘方的一般结论:

(2)幂的乘方法则

语言叙述:幂的乘方,底数不变,指数相乘.

字母表示:.(,都是正整数)

推导过程按课本,让学生说出每一步变形的根据.

(3)范例讲解

例1计算:

①②

③④

解:①

例2计算:

解:①原式

②原式

练习:①P971,2

②错例辨析:下列各式的计算中,正确的是()

A.B.

C.D.

(四)总结、扩展

同底数幂的乘法与幂的乘方性质比较:

指数与指数幂的运算篇2

一、 弄清幂的每个运算性质的由来

学习幂的运算性质时,应弄清楚每个运算性质产生或推导的过程,不要只是被动地记忆公式,因为被动记忆时我们只能记住它的外形,无法理解性质的本质,一旦遇到外形类似的公式,就容易混淆.例如有些同学初学幂的运算时,常与幂的乘方运算混淆,出现a2・a4=a8的错误,这是由于没有弄清楚同底数幂乘法运算的实质,即am・an=・==am+n.

理解和记忆同底数幂的运算性质时,应结合上面这个推导过程,从本质上掌握同底数乘积的结果的幂指数是和不是积,对于幂的其他运算性质也应结合推理过程来理解并记忆,这样才能真正把握运算性质本质,避免张冠李戴.

二、 明确幂的运算性质的相同点与不同点

2. 同底数幂的除法、0指数幂和负指数幂性质的相同点与不同点

三、 拓展幂的运算性质中字母的含义

同底数幂的乘法、幂的乘方、积的乘方这三条运算性质中的字母a、b既可以表示任意的数,也可以表示单项式和多项式,而同底数幂的除法中的除数既可以表示不等于零的数,也可以表示值不等于零的单项式和多项式.如计算(x-y)・[(x-y)3]3・(x-y)2,通常把(x-y)看作底数,先运用幂的乘方性质,然后运用同底数幂的乘法运算性质进行计算,可以得到(x-y)・(x-y)9・(x-y)2=(x-y)12. 这里需要避免出现这类错误:(x+y)3=x3+y3.

四、 活用幂的运算性质解题

学习幂的运算性质,不仅要能从左到右运用性质计算,还要善于应用逆向思维,尝试从右到左使用性质. 灵活运用,往往能避繁就简,化难为易,提高解题效率.

例1 计算:-

-2013×

22013.

【解析】面对这么大的两个数相乘,直接计算一定很难得到正确的结果,通过积的乘方运算法则的逆向运用,则可以将问题转化为两个简单的分数相乘. 即-

-2013×

22013=-

-

×2013=-(-1)2013=1.

例2 比较a=3555,b=4444,c=5333的大小.

【解析】由于a、b、c的指数都较大,即使用计算器也有一定的难度,故直接由乘方求解较繁,但仔细观察分析知555、444、333都是111的倍数,这时可逆用幂的乘方的法则.

解:因为3555=35×111=(35)111=243111;4444=44×111=(44)111=256111;5333=53×111=(53)111=

125111.

而由乘方的意义可知,125111

指数与指数幂的运算篇3

Yang Gaoxiang

(Ankang University,Ankang 725000,China)

摘要:主要讨论了当被积函数为幂函数与三角函数的乘积、被积函数是幂函数与反三角函数乘积、被积函数是幂函数与对数函数、被积函数是幂函数与指数函数乘积、被积函数是指数函数与三角函数乘积时四种情况下,如何具体的应用分部积分法,使学生更好的接受分部积分法的思想。

Abstract: When integrand was the following five cases: product of prower function and trigonometric function,product of prower function and inverse trigonometric function, product of prower function and logarithmic function, product of prower function and exponential function, product of exponential function and trigonometric function, how to apply the integration by parts was discussed such that student would better accept the integration by parts.

关键词:分部积分法 函数分类 分类教学

Key words: integration by parts;category of functions;category teaching

中图分类号:G42 文献标识码:A文章编号:1006-4311(2011)29-0193-01

0引言

对于《高等数学》的初学者而言对该课程的基本概念、定理的理解以及相关公式的应用往往有一定的难度,所以在实际的教学过程就需要教师对教学内容进行梳理,这样让才能使学生对所学的内容有比较清晰的认识和了解。对于不定积分的分部积分法[1]这部分知识已有许多从事高等数学教学的教师[2]对其教学方法进行了研究,笔者结合自己的教学经验认为就被积函数采取分类形式的教学能够使学生能够比较容易的接受和掌握计算要领。我们都知道分部积分法的公式为:?蘩f(x)dx=?蘩udv=u・v-?蘩vdu,其中要求?蘩vdu更容易求解。学生在利用这个公式求解不定积分题目时往往不知道如何选择恰当的函数u和v,使得?蘩vdu的计算比原不定分?蘩f(x)dx的计算更简单。下面我们主要从如下四个方面就被积函数的类型展开讨论。

1被积函数是幂函数与三角函数乘积

当被积函数是幂函数与三角函数的乘积时,三角函数优先。具体的讲是指当被积函数是幂函数与三角函数的乘积时,我们借助被积表达式中的微分运算,通过局部凑微分把三角形式的函数放到被积表达式中“d”的后面,从而确定出合适的函数u和v,然后再利用分部积分法公式进行求解。

例1. 计算不定积分?蘩x2cosxdx。分析:因为被积函数是x2cosx为幂函数与三角函数乘积的形式,我们只需要对函数cosx借助微分运算放到被积表达式中“d”的后面,即把原不定积分转化为?蘩x2d(sinx),然后再借助分部积分法公式进行求解。

解:?蘩x2dcosxdx=?蘩x2d(sinx)=x2sinx-?蘩sinxdx2=x2sinx-2?蘩xsinxdx=x2sinx-2?蘩xd(-cosx)=x2sinx+2xcosx-2?蘩cosxdx=x2sinx+2xcosx-2sinx+c

2被积函数是幂函数与反三角函数或对数函数乘积

当被积函数是幂函数与反三角函数或对数函数的乘积时,幂函数优先。具体的讲是指当被积函数是幂函数与反三角函数或对数函数的乘积时,我们借助被积表达式中的微分运算,通过局部凑微分把幂函数形式的函数放到被积表达式中“d”的后面,从而确定出合适的函数u和v,然后再利用分部积分法公式进行求解。

例 2. 计算不定积分?蘩xarttanxdx[3]。分析:因为被积函数是xarttanx为幂函数与反三角函数乘积的形式,我们只需要对幂函数x借助微分运算放到被积表达式中“d”的后面,即把原不定积分转化为?蘩arttanxd(■x2),然后再借助分部积分法公式进行求解。

解:?蘩xarttanxdx=?蘩arttanxd(■x2)=■x2arttanx-■?蘩x2d(arttanx)=■x2arttanx-■?蘩■dx=■x2arttanx-■x-■arttanx+c

(其中c为任意常数)

例 3. 计算不定积分?蘩x2lnxdx。分析:因为被积函数是x2lnx为幂函数与对数函数乘积的形式,我们只需要对函数幂函数x2借助微分运算放到被积表达式中“d”的后面,即把原不定积分转化为?蘩lnxd(■x3),然后再借助分部积分法公式进行求解。

解:?蘩x2lnxdx=?蘩lnxd(■x3)=■x3lnx-■?蘩x3d(lnx)=■x3lnx-■?蘩x2dx=■x3lnx-■x3+c

3被积函数是幂函数与指数函数乘积

当被积函数是幂函数与指数函数乘积时,指数函数优先。具体的讲是指当被积函数是幂函数与指数函数的乘积时,我们借助被积表达式中的微分运算,通过局部凑微分把指数函数形式的函数放到被积表达式中“d”的后面,从而确定出合适的函数u和v,然后再利用分部积分法公式进行求解。

例 4. 计算不定积分?蘩x2exdx。分析:因为被积函数是x2ex为幂函数与指数函数乘积的形式,我们只需要对指数函数ex借助微分运算放到被积表达式中“d”的后面,即把原不定积分转化为?蘩x2d(ex),然后再借助分部积分法公式进行求解。

解:?蘩x2exdx=?蘩x2d(ex)=x2ex-?蘩x2d(x2)=x2ex-2?蘩exxdx=x2ex-2?蘩xd(ex)=x2ex-2xex+2?蘩exdx=x2ex-2xex+2ex+c(其中c为任意常数)。

4被积函数是指数函数与三角函数乘积

当被积函数是指数函数与三角函数的乘积时,无论是先把指数形式的函数放到被积表达式中“d”的后面还是先把三角函数形式的函数放到“d”的后面无所谓,不过要使用两次分部积分法,并出现一次循环。

例 5. 计算不定积分?蘩exsinxdx。分析:因为被积函数是exsinx为指数函数与三角函数乘积的形式,我们只需要对函数cosx借助微分运算放到被积表达式中“d”的后面,即把原不定积分转化为?蘩x2d(sinx),然后再借助分部积分法公式进行求解。

解:方法一:先把指数形式的函数放到被积表达式中“d”的后面。?蘩exsinxdx=?蘩sinxdex=exsinx-?蘩exd(sinx)=exsinx-?蘩excosxdx=exsinx-?蘩cosxd(ex)=exsinx-excosx+?蘩exd(cosx)=exsinx-excosx-?蘩exsinxdx

故?蘩exsinxdx=■ex(sinx-cosx)+c(其中c为任意常数)。

方法二:先把三角形式的函数放到被积表达式中“d”的后面。

?蘩exsinxdx=?蘩exd(-cosx)=-excosx+?蘩cosxd(ex)=-excosx+?蘩cosxexdx=-excosx+?蘩exd(sinx)=-excosx+exsinx-?蘩sinxd(ex)=-excosx+exsinx-?蘩exsinxdx

故?蘩exsinxdx=■ex(sinx-cosx)+c(其中c为任意常数)。

参考文献:

[1]同济大学数学系.高等数学( 第六版上册) [M].北京: 高等教育出版社, 2007:208-212.

指数与指数幂的运算篇4

一、 忽视幂指数“1”

例1 计算:x3・x2・x.

错解 x3・x2・x=x3+2+0=x5.

剖析 误认为x的指数为0,实际上,单独一个字母的指数为1,只是省略没有写.

正解 x3・x2・x=x3+2+1=x6.

二、 混淆同底数幂的乘法与合并同类项

例2 计算:① x2・x2;② x2+x2.

错解 ① x2・x2=2x4;② x2+x2=2x4.

剖析 同底数幂的乘法法则是:同底数幂相乘,底数不变,指数相加;而合并同类项法则是:字母及字母的指数不变,只把系数相加减.

正解 ① x2・x2=x2+2=x4;② x2+x2=(1+1)x2=2x2.

三、 幂乘误为指乘

例3 计算:x4・x5.

错解 x4・x5=x4×5=x20.

剖析 把幂x4与x5的乘法运算符号用到指数4与5的运算上而造成错解.

正解 x4・x5=x4+5=x9.

四、 底数互异时符号错

例4 计算:① -x4・(-x)2;② (x-y)2・(y-x)3.

错解 ① -x4・(-x)2=(-x)6=x6;

② (x-y)2・(y-x)3=(x-y)2・(x-y)3=(x-y)5.

剖析 错误原因是把不同底数化为同底数时,漏掉了底数之中的负号或将式子的符号错当成底数符号.

正解 ① -x4・(-x)2=-x4・x2=-x6;

② (x-y)2・(y-x)3=(y-x)2・(y-x)3=(y-x)5.

五、 积的乘方漏因式

例5 计算:(a2b3)4.

错解 (a2b3)4=a2b3×4=a2b12.

剖析 积的乘方应该是将积中每一个因式分别乘方,而不是只将最后一个因式乘方.

正解 (a2b3)4=(a2)4・(b3)4=a2×4b3×4=a8b12.

六、 混淆幂的乘方和同底数幂的乘法

例6 计算:(x3)2.

错解 (x3)2=x3+2=x5.

剖析 幂的乘方法则是底数不变,指数相乘,而不是相加.

正解 (x3)2=x3×2=x6.

七、 半途而废,算不彻底

例7 计算:-■2012×3■2012.

错解 -■2012×3■2012=-■2012×■2012.

指数与指数幂的运算篇5

关键词:幂函数;案例设计;创新

一、中职幂函数教学单元的定位

1.课程定位

2.教案设计理念

在中职数学教学过程中,绝大多数执教教师发现,若没有数学认知和自我总结的实践过程,而是仅仅以结论提供方式的记忆式学习,往往容易造成学生解题时的困惑,这与其尚未真正掌握幂函数规律密切相关,故而本教案设计的核心原则在于避免以往的“告诉”式,而是以建构的理念,还学生以知识认知与理解掌握的主动权,鼓励学生在自我探究的过程中发现幂函数基本规律及其性质、属性,并同时结合教师的引导对知识进行确认与巩固,通过反复的、源自于幂函数性质规律各角度的练习,进行幂函数深入学习。“授人以渔”的指导思想让学生学会知识摸索与探求的基本学习规律和技巧。

3.教学基本情况分析

本节课程的授课对象为中职学生,基于其对函数一定量的基本概念与性质认知,函数研究思路与方法也有所熟悉,幂函数课程是结合并运用已知指数和对数函数概念、性质和图象及结题运用,开展教学的知识模块。但由于刚步入中职,对初中学习阶段的各种学习特点及习惯仍有所保留,而且能力和思维模式的发展仍属于转折成型期,所以教师须把握幂函数教学创新的体验、契机,对中职学生进行数学理性思维和类比等思维的培育,并获得幂函数教学的良好效果。

4.教材要求与目标设定

幂函数作为改革教材的重点内容,在现行中职类专业教学的数学教材中处于指数函数与对数函数之后,主要目的在于比对上述函数的复杂性之后,鼓励学生结合指数函数、对数函数进行归纳分析总结。

本教案所涉课程的主要内容为幂函数,主要以结合实例引用概括幂函数概念,在学生了解识记幂函数结构特征的基础上,了解其与指数函数和对数函数的区别,并通过特殊简单函数的图象比对进行观察、分析与总结。教学目标为结合一次、二次和指对函数的特性对比,培养学生数学的对比结合和相应的分析归纳能力,并提升其数形结合、特殊上升到一般、归纳类比的逻辑思维。

二、教学案例实施过程

1.以学生业已熟悉的各类简单函数的引出,进行学生函数思维的重新建立,如运用(1)p=k,(2)S=x2;(3)V=ax3;(4)r=■;(5)v=s・t-1提问学生上述函数在其“形状”变化上的一些共同特点,进而引出y=x,y=x2,y=x3,y=■,y=■,y=■,再结合一定时间的学生讨论,引导学生归纳幂函数的变化特征为以x为自变量,a为特定常数作为其指数所构成的y=xa,这一函数称为幂函数。经过上述幂函数的引入教学,学生被自然地带入对于类似函数的思考研究中,从而获得一定程度的概念性认知。而且该方法突出了本教案设计的“用教材而不是教教材,要创造性地使用教材”的教学创新原则,尊重教材的同时适当创新教材展示与教学设计。

2.基于幂函数引入的课堂导入,使学生获得幂函数理解认知,并提示指出幂函数结构中的x自变量位置,并以其与指数函数的位置进行直观对比,从而将复杂的幂函数与指数函数结构易混淆问题变为简单且不易遗忘的形状识记。同时,可以配合一定量的各种幂函数举例辨别,分辨并总结各类幂函数,在此基础上又对幂函数的形式进一步探析。接着,对幂函数的一般形式进行进一步探析。当然基于课程的教案创新改革必须秉持一贯的教学目标及其实施,也不能一味地进行脱离教学规律的教法创新。

总之,作为逐步发展的教学教法创新过程中的教学革新,都需要广大教学工作者充分结合学生现实、教材现实、教学现实、教育发展现实,中职数学中的幂函数不能以简单的给定义、告性质、做练习的模式进行,更应充分结合学生特点及其自有知识结构体系与认知能力特性,进行综合性创新。

参考文献:

[1]黄邦杰.例谈幂函数的教学设计与教学[J].课程教材教学研究:中教研究,2010.



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有