GB 50267 您所在的位置:网站首页 包络线英文 GB 50267

GB 50267

2023-03-26 17:28| 来源: 网络整理| 查看: 265

1 总则1.0.1 为贯彻国家防震减灾及核安全相关法律法规,严格执行民用核设施安全第一的方针,确保核电厂运行安全、质量可靠、技术先进、经济合理,制定本标准。1.0.2 本标准适用于极限安全地震动加速度峰值不大于0.5g地区的新建压水堆核屯厂的抗震设计,其基本原则和抗震计算方法也适用于重水堆、气冷堆和快中子堆核电厂。1.0.3 核电厂工程厂址必须进行地震安全性评价并确定厂址的设计基准地震动。1.0.4 按本标准设计的核电厂,当遭受极限安全地震动影响时,应能确保反应堆冷却剂压力边界完整、反应堆安全停堆并维持安全停堆状态,且放射性物质释放对环境的影响不超过国家规定的限值;当遭受运行安全地震动影响时,需停堆进行安全检查,在确认核电厂相关物项保持安全功能的前提下可恢复正常运行。1.0.5 核电厂物项的抗震设计应满足核电厂的整体安全要求;核电厂物项应依抗震分类实施抗震设计,抗震分类应与核电厂各物项的安全重要性分级相对应。1.0.6 核电厂物项的抗震分类可划分为抗震Ⅰ类、抗震Ⅱ类和非核抗震类。各具体物项的抗震分类可采用相关技术标准的规定。1.0.7 抗震Ⅰ、Ⅱ类物项的抗震设计应采用本标准规定的方法;非核抗震类物项的抗震设计不应低于国家现行非核安全相关抗震设计标准的规定。1.0.8 核电厂抗震设计除应符合本标准的规定外,尚应符合国家现行有关标准的规定。2 术语和符号2.1 术语2.1.1 物项 structure, system and component(SSC) 核电厂建筑物、构筑物、系统和部件的统称。2.1.2 地震动 ground motion 地震引起的地壳岩土介质的运动,由地震动时程和相应的峰值、谱和持续时间等参数表述。2.1.3 设计基准地震动 design basis ground motion 核电厂抗震Ⅰ、Ⅱ类物项抗震设计中作为输入采用的地震动,包括极限安全地震动和运行安全地震动两个水准。2.1.4 极限安全地震动 ultimate safety ground motion 核电厂设计基准地震动的较高水准,是对应极限安全要求的地震动,通常为预估的核电厂所在地区可能遭遇的最大潜在地震动,对应的年超越概率为10-4。2.1.5 运行安全地震动 operational safety ground motion 核电厂设计基准地震动的较低水准,主要用于对核电厂运行安全控制、设计中的荷载组合与应力分析等,该地震动具有与极限安全地震动不同的用途。2.1.6 厂址特定地震反应谱 site-specific response spectra 考虑具体核电厂厂址区域地震背景和场地特性的设计基准地震反应谱。2.1.7 标准设计反应谱 normalized response spectra 不考虑具体核电厂厂址区域地震背景和场地特性的具有包络谱特点的设计基准地震反应谱。2.1.8 抗震设防烈度 seismic precautionary intensity 按国家规定的权限批准、作为一个地区非核工程设施抗震设防依据采用的地震烈度,一般情况下采用50年内超越概率10%的地震烈度。2.1.9 要求反应谱 required response spectra(RRS) 设备抗震鉴定试验中由相关技术标准规定的输入反应谱。2.1.10 试验反应谱 test response spectra(TRS) 设备抗震鉴定试验中实际采用的输入反应谱。2.2符号2.2.1 地震动: |F(f)|、|F(ω)|——地震动加速度时程平稳段的傅立叶振幅谱; S(f)、S(ω)——地震动加速度时程的功率谱; Td——地震动加速度时程平稳段的持续时间; a——地下直管所在高程处的最大地震动加速度; amax——地震动加速度峰值; c——地基中沿管道传播的地震波的视波速; fmax——考虑的地震动最高频率; m1、m2——分别为地震动加速度时程x1(t)和x2(t)的均值; {xb}——输入的地基水平地震动位移矢量; υe——地下直管所在高程处的最大地震动速度; λ——地震波视波长; ρ12——地震动加速度时程x1(t)和x2(t)间的相关系数; σ1、σ2——分别为地震动加速度时程x1(t)和x2(t)的标准差。2.2.2 结构参数和结构分析: Cx、Cz、Cφ——分别为基础沿水平、竖向和摆动方向的阻尼系数; [C]——结构的阻尼矩阵; Kn、Kt——分别为沿管道轴向和横向的基床系数; Kx、Kz、Kφ——分别为地基的水平、竖向和摆动方向的弹簧刚度; Kx′、Kz′、Kφ′——分别为基础置于地表时的地基水平、竖向和摆动方向的弹簧刚度; Kx″、Kz″、Kφ″——分别为考虑基础埋置效应时的地基水平、竖向和摆动方向的附加弹簧刚度; [K]——结构的刚度矩阵; [Ks]——地基弹簧刚度矩阵; M——结构质量; [M]——结构的质量矩阵; Rn(f)——反应谱; Sa——设备所在楼层反应谱的最大谱值; Sai——对应频率i的反应谱值; [S]——动力阻抗矩阵; [Ubs]——位移影响矩阵; ZPA——输入反应谱中对应零周期的加速度谱值,即输入加速度峰值; ZPAi——i支承点处反应谱的零周期加速度谱值; fi、fj——分别为对应i振型与j振型的频率; fn——结构最低固有频率; kn、kt——分别为沿管道轴向和横向的地基弹簧刚度; ——输入结构体系的加速度矢量; {xb(t)}——支承点的输入位移矢量; ——支承点的输入加速度矢量; εij——i振型与j振型的相关系数; ηx、ηz、ηφ——分别为地基水平、竖向和摆动方向的辐射阻尼比; ξ——阻尼比; ξi、ξj——分别为对应i振型与j振型的阻尼比; λm——子结构总质量与主结构总质量的比值; λf——子结构基本频率与主结构主导频率的比值; ω1——结构的基本自振圆频率。2.2.3 作用和作用效应: A——事故条件下产生的荷载效应; C——与吊车有关的荷载效应(亦记为Ccr); D——永久荷载效应; Eo——运行安全地震作用效应; Es——极限安全地震作用效应; F——流体压力效应,设备质心的等效地震作用; {F}——作用于结构的水平地震作用矢量; G——设备总重力载荷,地基、基础承受的永久荷载效应(含自重效应、固定设施荷载效应和上浮力效应); H——侧向土压力效应; Ha——结构内部溢水或外部水淹产生的荷载效应; L——活荷载效应; Lr——屋面活荷载效应; M——荷载组合在基础底面引起的倾覆力矩; Ma——自重和其他持续荷载引起的组合弯矩; Mb——运行安全地震动引起的弯矩和其他偶然荷载引起的弯矩之和; Mi——机械荷载与地震作用引起的组合弯矩; N——正常运行和停堆期间承受的荷载效应,荷载组合在基础底面引起的竖向力; P——D级使用荷载引起的压应力、设计压力、基础底面平均压应力设计值; P0——工作压力的变化幅值; Pa——设计基准事故工况下的压力荷载效应; Pmax——B级使用荷载引起的压力峰值,基础底面边缘的最大压应力设计值; Pv——安全壳内部或外部压力引起的外压荷载效应; Q——施加预应力产生的荷载效应; R——雨荷载效应,空间地震作用最大值; R0——正常运行或停堆期间的管道和设备反力效应; Ra——设计基准事故工况下管道和设备反力效应; RI——I方向地震作用最大值; RI(t)——I方向地震反应时程; RI(t)max——I方向地震反应时程中的最大值; RImax——最大的单向地震作用; Ri——i振型的总地震作用最大值; RpI——I方向周期性地震作用分量最大值; Rpi、Rpj——分别为对应i振型与j振型的周期性地震作用最大值; RrI——I方向刚性地震作用分量最大值; S——荷载组合作用效应(内力、变形)设计值,雪荷载效应; Si——第i种作用效应组合设计值; Sijk——第i种组合中的第j种作用效应标准值; T0——正常运行或停堆期间的温度作用效应; Ta——设计基准事故工况下的温度作用效应; Ta、Tb——分别为总体结构不连续或材料不连续的a、b两端的平均温度; Yj——管道破裂时在结构上产生的喷射冲击荷载效应; Ym——管道破裂时施加于结构的飞射物撞击荷载效应; Yr——管道破裂时破裂管道在结构上产生的荷载效应; Yy——设计基准事故工况下的局部作用效应; ax、ay、az——分别为作用于设备或延伸机构质心的三个正交方向的地震加速度反应; fa——计算压缩应力; fb——计算弯曲应力; ft——计算拉伸应力; fn——单位管长管壁与周边岩土间的最大摩擦力; u——管道柔性接头处的最大轴向线位移; ui——i支承点处的最大位移; {x}——结构地震位移反应水平矢量; {xs(l)}——结构的静态位移反应矢量; ,,{xd(t)}——分别为结构的加速度反应、速度反应和动态位移反应矢量; θ——地下管道柔性接头处的最大角位移; σb——管道弯曲应力; σl——局部薄膜应力; σm——总体薄膜应力; σn——地下直管最大轴向地震应力。2.2.4 材料性能和抗力: E——材料的弹性模量; E1——地基介质表层的弹性模量; Ed——地基介质底层的弹性模量; Eab——结构不连续或材料不连续的a、b两侧弹性模量的平均值; Ec——混凝土的弹性模量; Es——钢材的弹性模量; F——峰值应力强度; Fa——许用压缩应力; Fb——许用弯曲应力; Ft——许用拉伸应力; Ftb——工作温度下的许用拉应力; Fv——许用剪切应力; Fvb——工作温度下的许用剪应力; G——地基介质平均剪切模量,与地震作用下地基最大应变幅值相应的地基介质的剪切模量; Gc——混凝土的剪切变形模量; Gs——钢材的剪切变形模量; Gi——地基介质i层的剪切模量; Pb——弯曲应力强度; Pe——膨胀应力强度; Pl——局部薄膜应力强度; Pm——总体薄膜应力强度,一次薄膜应力强度; Pt——与荷载变形曲线峰值对应的极限强度; Q——二次应力强度; R——截面承载力或变形的限值; S——容许应力值或许用应力; Sh——工作温度下的许用应力; Sa——疲劳极限; Sm——材料的许用应力强度或设计应力强度; SRi——第i种作用效应限值; Su——材料的抗拉强度; Sut——由实际使用的材料应力-应变曲线取得的抗拉强度值; Sy——材料的屈服强度,工作温度下的屈服强度; Vs——地基介质剪切波速; fSE——调整后的地基土抗震承载力设计值; αa、αb——分别为总体结构不连续或材料不连续的a、b两侧在室温下的热膨胀系数; υ——泊松比; ρ——地基介质平均密度。2.2.5 几何参数: An——地下直管管壁的净截面面积; Cc——长细比控制参数; Cx——焊脚长度; D——管道直径; D0——管道外直径; D1——渐缩管大端外直径; D2——渐缩管小端外直径; Dm——主管平均直径; H——基础深度; I——管道的截面惯性矩; L——集中弹簧间距,两柔性接头间的管道长度,水平运动正交方向的基础边长; R——弯头或弯管的名义半径; Rm——主管平均半径; Tb——支管名义壁厚; Tb′——连接支管的名义壁厚; Tr——主管名义壁厚; Z——管道的截面模量; a——翘离情况下基础底面实际接地宽度; b——基础宽度或水平运动方向的基础边长; da、db——分别为总体结构不连续或材料不连续的a、b两侧内直径; di——地基介质i层中心至基础底面的距离; dm——支管平均名义直径; h——地基有限元模型单元高度; hi——地基介质i层的厚度; l——元件的自由长度; lb——元件在弯曲平面上的自由长度; r——截面旋转半径,基础底面半径或等效半径,与三通和弯头相配的管道平均半径; r0——计算点至管截面中性轴的距离; rb——相对弯曲轴线确定的旋转半径; rm——管道平均半径; r′m——与接管座连接的管道半径; rp——补强接管或连接支管的外半径; rz——补强支管接头半径; t——管道名义壁厚; t1——渐缩管大端壁厚; t2——渐缩管小端壁厚; ta、tb——分别为距离、内的平均壁厚; tb——补强区支管壁厚; te——补强壁厚; tn——管道名义壁厚; tmax——锥形管过渡段最大壁厚; β——基础底面接地率。2.2.6 计算参数: B1、B2——管件的一次应力指数; C1、C2、C3——管件的二次应力指数; Cv——地基弹性模量的变异系数; Fx、Fz、Fφ——分别为地基介质在水平、竖向和摆动方向的等效弹簧刚度计算系数; K——设备分析中的长度系数; h——管道设计中的柔度特性; i——管道设计中的应力增强系数; k——计算等效地震作用的放大系数,承载力调整系数,管道设计中的柔性系数; ki——对应第i种作用效应的调整系数; n——基础底面以上地基介质的分层数; αa、αb——分别为地下管道轴向应力和弯曲应力计算中的波速系数; αi——振型组合中的刚性反应系数; β——地基有限元高度计算系数,岩土弹簧刚度计算系数; βx、βz、βφ——分别为在水平、竖向和摆动方向的基础底面等效半径计算系数; γij——第i种组合中的第j种作用效应的分项系数; δ——地下管道轴向应力计算系数; η——多频效应系数。2.2.7 其他: H——场地覆盖土层厚度; N——实测标准贯入锤击数; N0——标准贯入锤击数基准值; P——超越概率,对应某种极限状态的结构抗震失效概率; P′——确定的地震作用下对应某种极限状态的结构抗震条件失效概率; PF——对应某种极限状态的结构抗震目标失效概率; PL——液化概率; ds——标准贯入试验点深度; dw——地下水埋深3 基本要求3.1 抗震概念设计原则3.1.1 结构宜满足下列有关体形和构件布置的要求: 1 结构重心尽可能低; 2 结构的平面和立面外形应简单规则,尽量避免局部突出或收进; 3 结构的刚度和质量分布应均匀,刚度中心尽量接近质量中心。3.1.2 结构体系应满足下列基本要求: 1 应有明确的计算简图和合理的地震作用传递途径; 2 应具备必要的抗震承载力及安全裕度; 3 应避免出现局部薄弱部位,若有局部薄弱部位应予加强。3.2 计算模型3.2.1 核电厂结构抗震计算模型应符合下列规定: 1 质量和刚度分布不对称的结构,应采用平动和扭转耦联作用计算模型。 2 采用集中质量模型时,集中质量的个数不宜少于拟考虑振型数的两倍。 3 结构地基岩土的平均剪切波速大于2400m/s或地基刚度大于,上部结构刚度的两倍时,可不考虑地基与结构的相互作用,不满足以上条件时,上部结构的抗震计算应计入地基与结构的相互作用且满足下列要求: 1) 地基近似为均质弹性介质时,可采用集中参数模型,其中,当基础埋深与基础底面等效半径之比小于1/3时,可不考虑基础埋置效应; 2) 非均质地基宜采用有限元模型; 3) 相互作用分析可采用本标准附录A中的方法,也可采用其他适用方法。 4 结构模型应考虑支承构件刚度对其动力反应的影响。 5 结构模型应计入结构附属构件和结构中液体的质量。 6 储存液体的结构应计入液体晃动效应和其他液压效应。 7 当允许结构发生水平方向的大变形时,应考虑竖向力和竖;向地震作用引起的P-Δ效应。3.2.2 由主结构(支承结构)和子结构(被支承结构)组成的结构体系的抗震计算,应符合下列规定: 1 宜考虑主结构与子结构的动力相互作用,建立耦联模型进行抗震计算。 2 当子结构单点支承于主结构时,若符合下列条件之一,可不进行体系的耦联计算: 1) λm<0.01; 2) 0.01≤λm≤0.1,且λf≤0.8或λf≥l.25。 式中:λm——子结构总质量与主结构总质量的比值; λf——子结构基本频率与主结构主导频率的比值。 3 当子结构以两点或两点以上支承于主结构且子结构对主结构的质量和刚度产生不可忽略的影响时(如反应堆冷却剂系统),应采用耦联模型进行分析。3.3 地震作用计算方法3.3.1 结构应就两个正交水平方向和一个竖直方向计算地震作用,水平地震作用方向应对应结构平面主轴或取对结构最不利的方向。3.3.2 结构地震作用一般可采用弹性方法计算;弱非线性结构可采用较大阻尼比的弹性方法计算,非线性土体和弹塑性支承构件可采用等效线性化方法计算,强非线性结构的计算可采用弹塑性方法。3.3.3 结构地震作用计算通常可采用反应谱法、时程分析法和频域传递函数法;当有充分依据可以得出更保守的结果时,也可采用等效静力法。3.3.4 采用反应谱法计算结构地震作用时,地震作用最大值应取各振型地震作用的组合;采用时程分析方法计算结构地震作用时,可同时或分别就相互正交的两个水平方向和竖向进行计算。空间地震作用最大值应组合各单向地震作用最大值确定。地震作用最大值的计算方法应符合本标准附录B的规定。3.3.5 子结构各支承点处运动不一致时,可优先采用耦联模型进行时程分析或反应谱分析,不采用耦联分析的子结构的多点输入分析方法应符合本标准附录C的规定。3.3.6 地震动相关输入应满足下列要求: 1 不考虑地基与结构的相互作用时,支承于地基的结构动力分析应输入结构基础底面的设计地震反应谱或地震动时程; 2 考虑地基与结构的相互作用时,相互作用体系的地震动输入处可选择地表、基础底面或地基; 3 解耦后的支承于主结构的子结构的计算,应输入支承点处的设计楼层反应谱或地震反应时程。3.4 楼层反应谱3.4.1 楼层反应谱一般可由主结构相应楼层(或高程)的地震加速度反应时程计算得出,楼层反应谱应包括两个正交水平方向的谱和一个竖向谱。计算楼层反应谱时,应满足下列要求: 1 主结构质量和刚度对称分布时,某一方向的楼层反应谱可由该方向地震动单独输入时的楼层地震加速度反应时程得出;主结构质量和刚度非对称分布时,每一方向的楼层反应谱可由三向地震动单独输入时该方向楼层地震加速度反应的代数和得出。 2 计算楼层反应谱时,频率增量数值宜按表3.4.1选取。1 General provisions1.0.1 This standard is developed in order to implement the national laws and regulations on earthquake prevention and disaster reduction and nuclear safety, strictly follow the policy of safety first for civil nuclear facilities, and ensure the safe operation, reliable quality, advanced technology and economic rationality of nuclear power plants.1.0.2 This standard is applicable to the seismic design of new PWR nuclear power plants in areas where the peak value of ultimate safety ground motion acceleration is not greater than 0.5 g, and its basic principles and seismic computation methods are also applicable to heavy water reactor, gas-cooled reactor and fast neutron reactor nuclear power plants.1.0.3 The nuclear power plant sites must be subjected to evaluation for seismic safety, for which the design basis ground motion must be determined.1.0.4 The nuclear power plants designed according to this standard, under the ultimate safety ground motion, shall be able to ensure that the reactor coolant pressure boundary is complete, the reactor is shut down safely and maintained in a safe shutdown state, and the impact of radioactive material release on the environment does not exceed the limits stipulated by China; such nuclear power plants, under the operational safety ground motion, shall be shut down for safety inspection, and can be resumed provided that the related SSCs of the nuclear power plants keep safety functions.1.0.5 The seismic design of nuclear power plant SSCs shall meet the overall safety requirements of the plants; seismic design of nuclear power plant SSCs shall be carried out according to the seismic category, which shall correspond to the safety importance classification of nuclear power plant SSCs.1.0.6 The nuclear power plant SSCs can be classified by seismic category into Category I seismic, Category II seismic and non-nuclear seismic SSCs. The seismic category of each specific SSC may follow the provisions of relevant technical standards.1.0.7 The seismic design of Category I seismic and Category II seismic SSCs shall follow the methods specified in this standard; the seismic design of non-nuclear seismic SSCs shall not be lower than those specified in the current non-nuclear safety-related seismic design standards of the nation.1.0.8 In addition to this standard, the seismic design of nuclear power plants shall also comply with the requirements of the current relevant standards of the nation.

2 Terms and symbols2.1 Terms2.1.1 structure, system and component (SSC)general term for buildings, structures, systems and components of a nuclear power plant2.1.2 ground motionearthquake-induced movement of earthcrust's rock and soil medium, expressed by time history of ground motion and corresponding parameters such as peak value, spectrum and duration2.1.3 design basis ground motionground motion used as input in the seismic design of Categories I and II seismic SSCs in nuclear power plants, including two levels, i.e. ultimate safety ground motion and operational safety ground motion2.1.4 ultimate safety ground motionhigher level of design basis ground motion of nuclear power plants, corresponding to the ultimate safety requirements, which is usually the predicted maximum potential ground motion that may be encountered in the nuclear power plant area, of which the corresponding annual exceeding probability is 10-4.2.1.5 operational safety ground motionlower level of design basis ground motion of nuclear power plants, mainly used for safety control of nuclear power plant operation, load combination and stress analysis in design, etc. This ground motion has different uses from the ultimate safety ground motion.2.1.6 site-specific response spectradesign basis seismic response spectrum in consideration of seismic background and site characteristics of specific nuclear power plant site area2.1.7 normalized response spectradesign basis seismic response spectrum with envelope spectrum characteristics without regard to seismic background and site characteristics of specific nuclear power plant site area2.1.8 seismic precautionary intensityseismic intensity approved as the seismic precautionary basis of non-nuclear engineering facilities in a region according to the authority prescribed by the state (generally the seismic intensity with exceeding probability of 10% during the 50 years is adopted)2.1.9 required response spectra (RRS)input response spectrum specified by relevant technical standards in seismic evaluation test of equipment2.1.10 test response spectra (TRS)input response spectrum actually used in seismic evaluation test of equipment2.2 Symbols2.2.1 Ground motion:|F(f)|,|F(ω)|——the Fourier amplitude spectrum of stationary phase of ground motion acceleration time history;S(f), S(ω)——the power spectrum of ground motion acceleration time history;Td——the duration of stationary phase of ground motion acceleration time history;a——the maximum ground motion acceleration at the elevation of the subterranean straight pipe;amax——the peak acceleration of ground motion;c——the apparent wave velocity of seismic waves propagating along pipes in foundation;fmax——the maximum frequency of ground motion considered;m1, m2——the mean of ground motion acceleration time histories x1(t) and x2(t) respectively;{xb}——the input horizontal ground motion displacement vector of foundation;υe——the maximum ground motion velocity at the elevation of the subterranean straight pipe;λ——the apparent wavelength of seismic wave;ρ12——the correlation coefficient between ground motion acceleration time histories x1(t) and x2(t);σ1, σ2——the standard deviation of ground motion acceleration time histories x1(t) and x2(t) respectively.2.2.2 Structural parameters and structural analysis:Cx, Cz, Cφ——the damping coefficients of the base along the horizontal, vertical and swing directions respectively;[C]——the damping matrix of the structure;Kn, Kt——the subgrade bed coefficients along the axial and transverse directions of the pipe respectively;Kx, Kz, Kφ——the spring stiffness of the foundation along the horizontal, vertical and swing directions respectively;Kx′, Kz′, Kφ′——the spring stiffness of the foundation along the horizontal, vertical and swing directions respectively, when the base is placed on the ground surface;Kx″, Kz″, Kφ″——the additional spring stiffness of the base along the horizontal, vertical and swing directions respectively, in consideration of the foundation embedment effects;[K]——the stiffness matrix of structure;[Ks]——the stiffness matrix of foundation spring;M——the structural mass;[M]——the structural mass matrix;Rn(f)——the response spectrum;Sa——the maximum spectrum value of the response spectrum of the floor where the equipment is located;Sai——the response spectrum value corresponding to frequency i;[S]——the dynamic impedance matrix;[Ubs]——the displacement influence matrix;ZPA——the acceleration spectrum value corresponding to zero period in the input response spectrum, i.e., the input acceleration peak value;ZPAi——the zero-period acceleration spectrum value of response spectrum at the supporting point i;fi, fj——the frequency corresponding to mode shape i and mode shape j respectively;fn——the minimum natural frequency of a structure;Kn, Kt——the foundation spring stiffness along the axial and transverse directions of the pipe respectively;——the input acceleration vector of the structural system;{xb(t)}——the input displacement vector at the supporting point;——the input acceleration vector at the supporting point;εij——the correlation coefficient between mode shape i and mode shape j;ηx, ηz, ηφ——the radiation damping ratio of the foundation along horizontal, vertical and swing directions respectively;ξ——the damping ratio;ξi, ξj——the damping ratio corresponding to mode shape i and mode shape j respectively;λm——the ratio of the total mass of the substructure to the total mass of the main structure;λf——the ratio of the basic frequency of the substructure to the dominant frequency of the main structure;ω1——the circular frequency of the basic natural vibration of a structure;2.2.3 Actions and effects:



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有