CloudBrain 您所在的位置:网站首页 鏋i槼阒茬柅绔欓棬璇婃墦棰勯槻阍堢数璇 CloudBrain

CloudBrain

2024-06-02 08:37| 来源: 网络整理| 查看: 265

CloudBrain-MRS: An intelligent cloud computing platform for in vivo magnetic resonance spectroscopy preprocessing, quantification, and analysis ( [English] )

闄堟檽铦�1,#, 鏉庡槈閽�1,#, 闄堟#鎴�1, 鍛ㄦ瘏鑽�1, 娑傜珷浠�1, 鏋楃編閲�2, 搴锋嘲灞�3, 鏋楀缓蹇�3, 宸╂稕4, 鏈辨煶绾�5, 鍛ㄥ缓鍐�5, 娆ч槼鏋�6, 閮澃閿�7, 钁g户鎵�1, 閮开 8, 灞堝皬娉�1*

 

1鍘﹂棬澶у锛岀數瀛愮瀛︾郴锛岀寤虹瓑绂诲瓙浣撲笌纾佸叡鎸噸鐐圭爺绌跺疄楠屽锛屼腑鍥斤紝鍘﹂棬;

2鍘﹂棬澶у搴旂敤娴锋磱鐗╃悊涓庡伐绋嬬郴锛屼腑鍥斤紝鍘﹂棬;

3鍘﹂棬澶у闄勫睘涓北鍖婚櫌纾佸叡鎸锛屼腑鍥斤紝鍘﹂棬;.

4灞变笢绗竴鍖荤澶у闄勫睘鐪佺珛鍖婚櫌鏀惧皠绉戯紝涓浗锛屽北涓滄祹鍗�;

5澶嶆棪澶у闄勫睘涓北鍖婚櫌鏀惧皠绉戯紝涓浗锛屽帵闂�;

6鍘﹂棬澶у鍖诲闄㈤檮灞炰笢鍗楀尰闄㈠尰瀛﹀奖鍍忕锛屼腑鍥斤紝鍘﹂棬;

7鍘﹂棬澶у寰數瀛愪笌闆嗘垚鐢佃矾绯伙紝涓浗锛屽帵闂�;

8鍘﹂棬鐞嗗伐瀛﹂櫌锛岃绠楁満涓庝俊鎭伐绋嬪闄紝涓浗锛屽帵闂�;

鑱旂郴浜�: quxiaoboxmu.edu.cn

 

寮曠敤:  Xiaodie Chen, Jiayu Li, Dicheng Chen, Yirong Zhou, Zhangren Tu, Meijin Lin, Taishan Kang, Jianzhong Lin, Tao Gong, Liuhong Zhu, Jianjun Zhou, Jiefeng Guo, Jiyang Dong, Di Guo, Xiaobo Qu鈭�, CloudBrain-MRS: An intelligent cloud computing platform for in vivo magnetic resonance spectroscopy preprocessing, quantification, and analysis,Journal of Magnetic Resonance, vol. 358, pp. 107601, 2023.

鍏ㄦ枃閾炬帴锛�https://www.sciencedirect.com/science/article/pii/S1090780723002367?via%3Dihub

 

鎽樿:

纾佸叡鎸尝璋憋紙Magnetic Resonance Spectroscopy, MRS锛夋槸涓�绉嶉噸瑕佺殑涓村簥鐤剧梾璇婃柇鏂规硶锛岄�氳繃MRS鍙互瑙傚療浠h阿鐗╃殑淇″彿寮哄害锛岃繘涓�姝ユ帹鏂叾娴撳害銆傝櫧鐒剁鍏辨尟鍘傚晢鏅亶鎻愪緵璋卞浘鍙鍖栧拰浠h阿鐗╁畾閲忕瓑鍩烘湰鍔熻兘锛屼絾鐢变簬缂轰箯鏄撶敤鐨勫鐞嗚蒋浠舵垨骞冲彴锛孧RS鐨勪复搴婄爺绌舵帹骞夸粛鍙楀埌闄愬埗銆備负浜嗚В鍐宠繖涓棶棰橈紝鎴戜滑寮�鍙戜簡纾佸叡鎸尝璋卞畾閲忓垎鏋愬钩鍙癈loudBrain-MRS銆傝繖鏄竴涓熀浜庝簯璁$畻鐨勫湪绾垮钩鍙帮紝鎻愪緵寮哄ぇ鐨勭‖浠跺拰鍏堣繘鐨勭畻娉曘�傝骞冲彴鍙渶閫氳繃娴忚鍣ㄥ嵆鍙闂紝鐢ㄦ埛鏃犻渶瀹夎浠讳綍绋嬪簭銆侰loudBrain-MRS 杩橀泦鎴愪簡缁忓吀鐨� LCModel 妯″瀷鍜屽厛杩涚殑浜哄伐鏅鸿兘绠楁硶锛屽苟鏀寔瀵规潵鑷笉鍚屼緵搴斿晢鐨� MRS 鏁版嵁杩涜鎵归噺棰勫鐞嗐�侀噺鍖栧拰鍒嗘瀽銆傛澶栵紝璇ュ钩鍙拌繕鎻愪緵浠ヤ笅瀹炵敤鍔熻兘锛氾紙1锛夎嚜鍔ㄧ粺璁″垎鏋愶紝瀵绘壘鐤剧梾鐨勭敓鐗╂爣璁扮墿锛涳紙2锛夌粡鍏搁噺鍖栫畻娉曚笌浜哄伐鏅鸿兘閲忓寲绠楁硶涔嬮棿鐨勪竴鑷存�ч獙璇侊紱锛�3锛夊僵鑹蹭笁缁村彲瑙嗗寲锛屾柟渚胯瀵熷崟涓唬璋㈢墿璋便�傛渶鍚庯紝鍋ュ悍鍙楄瘯鑰呭拰杞诲害璁ょ煡闅滅鎮h�呯殑鏁版嵁琚敤鏉ュ睍绀鸿骞冲彴鐨勫姛鑳姐�傝繖鏄涓敮鎸佷娇鐢ㄤ汉宸ユ櫤鑳界畻娉曞鐞嗘椿浣� MRS 鏁版嵁鐨勪簯璁$畻骞冲彴锛屽凡鍏变韩鍦� MRSHub绀惧尯锛屾彁渚涜嚦灏戜袱骞寸殑鍏嶈垂璁块棶鍜屾湇鍔°�傚鏋滄偍鎰熷叴瓒o紝璇疯闂�https://mrshub.org/software_all/#CloudBrain-MRS 鎴� https://csrc.xmu.edu.cn/CloudBrain.html銆�

鍏抽敭璇�: 纾佸叡鎸尝璋便�佷簯璁$畻銆侀噺鍖栥�佹暟鎹垎鏋愩�侀澶勭悊

鏂规硶:

1.     鑳屾櫙

纾佸叡鎸尝璋憋紙MRS锛夋槸涓�绉嶉潪渚靛叆鎬ф妧鏈紝鐢ㄤ簬閲忓寲浜鸿剳涓殑浠h阿鐗╋紝浠ヨ瘖鏂悇绉嶇柧鐥呫�傜劧鑰岋紝鑾峰彇鐨� MRS 淇″彿閫氬父闇�瑕佽繘琛屾暟鎹澶勭悊鍜屽畾閲忓垎鏋愶紝浠ヨ幏寰楀噯纭殑浠h阿鐗╂祿搴︺�傜洰鍓嶏紝鏈夊绉嶅紑婧愬伐鍏峰彲鐢ㄤ簬 MRS 淇″彿鐨勯澶勭悊銆侀噺鍖栧拰鍒嗘瀽銆傝櫧鐒惰繖浜涘伐鍏锋彁渚涗簡鍙嬪ソ鐨勭敤鎴风晫闈紝浣嗕粛瑕佹眰鐢ㄦ埛缂栬瘧婧愪唬鐮併�佷笅杞戒緷璧栭」鎴栧畨瑁呰蒋浠躲�傛澶栵紝杩欎簺宸ュ叿閮戒笉鍖呮嫭娣卞害瀛︿範绠楁硶锛岃繖瀵瑰綋鍓嶄汉宸ユ櫤鑳芥椂浠g殑鐮旂┒鏄竴涓噸澶ч檺鍒躲�傚湪杩囧幓鐨勫嚑鍗佸勾涓紝宸叉湁澶氫釜 MRS 浜戝钩鍙扮敤浜庢ā鎷熷熀闆嗐�佷粠鏍哥鍏辨尟鐨勯潪閲囨牱鏁版嵁涓噸寤洪璋便�備簯骞冲彴杩樿搴旂敤浜庣鍏辨尟鎴愬儚锛圡RI锛夈�備簯璁$畻鎻愪緵浜嗕竴涓槗浜庤闂�佺伒娲讳笖鍙墿灞曠殑骞冲彴銆傜敤鎴锋棤闇�鎷呭績纭欢缁存姢鍜岀鐞嗭紝鍥犳鍙互涓撴敞浜庡悇鑷笓涓氶鍩熺殑鏍稿績浠诲姟銆�

鍥�1. 绯荤粺姒傚康鍥�

2.     宸ヤ綔娴�

鐩墠锛岃骞冲彴涓昏鍖呮嫭涓や釜鍔熻兘妯″潡锛氭櫤鑳介噺鍖栧拰鑷姩鍒嗘瀽銆傜敤鎴峰彲浠ユ敞鍐岃处鎴锋垨浣跨敤鎴戜滑鐨勬祴璇曡处鎴凤紙鐢ㄦ埛鍚嶏細demo_csg锛屽瘑鐮侊細csg12345678锛侊級銆備富椤典笂鐨勪娇鐢ㄦ墜鍐屼篃鑳藉府鍔╃敤鎴峰揩閫熶笂鎵嬨�侰loudBrain-MRS 鐨勫伐浣滄祦绋嬪鍥� 2 鎵�绀猴紝璇︾粏鎻忚堪濡備笅锛� (1) 鍔犺浇鏁版嵁鍜岀浉搴斿弬鏁般�傝骞冲彴鐩墠鏀寔璇诲彇椋炲埄娴︺�佽タ闂ㄥ瓙鍜孏E鐨� RAW 绫诲瀷鐨勬暟鎹紝浠ュ強鑱斿奖鍜岃タ闂ㄥ瓙鐨� DICOM 绫诲瀷鐨勬暟鎹紝杩樻敮鎸� LCModel 鐨勬暟鎹牸寮忋�� (2)璋冪敤閲忓寲妯″瀷瀵规暟鎹繘琛屾壒閲忔垨闈炴壒閲忛噺鍖栵紝骞朵繚瀛橀噺鍖栫粨鏋溿�傚鏋滅敤鎴烽�夋嫨瀵规暟鎹繘琛屽啀澶勭悊锛屽垯浼氬湪閲忓寲鍓嶈繘琛屽幓鍣鐞嗐�� (3) 鏍规嵁閲忓寲缁撴灉鐢熸垚鍥涚鍙鍖栬氨鍥撅細 杈撳叆璋便�佹暣浣撳拰鍗曚釜浠h阿鐗╃殑鎷熷悎璋变互鍙婁笁缁村彲瑙嗗寲璋便�傚鏋滃簲鐢ㄤ簡鍘诲櫔锛屽垯浼氭樉绀哄幓鍣墠鍜屽幓鍣悗鐨勮氨鍥俱�� (4) 鎻愬彇瀹氶噺鍒嗘瀽缁撴灉骞剁敓鎴愮浉搴旂殑鍒嗘瀽鍥捐〃銆傜粺璁″垎鏋愬皢鐢熸垚绠卞瀷鍥惧拰涓夌嚎琛ㄣ�備竴鑷存�у垎鏋愬姛鑳藉皢鐢熸垚Bland-Altman鍥惧拰绠卞舰鍥俱��

鍥�2. 骞冲彴鐨勬暣涓伐浣滄祦

3.     绯荤粺鏋舵瀯

涓轰簡鎻愰珮鐢ㄦ埛鍙嬪ソ鎬э紝CloudBrain-MRS閲囩敤浜嗘祻瑙堝櫒/鏈嶅姟鍣紙B/S锛夊伐浣滄ā寮忥紝鍗虫祻瑙堝櫒-璇锋眰/鏈嶅姟鍣�-鍝嶅簲妯″紡銆傜郴缁熸灦鏋勫彲鍒嗕负涓変釜閮ㄥ垎锛屽嵆娴忚鍣ㄣ�佹湇鍔″櫒鍜屾暟鎹簱銆傚浘 3 鏄剧ず浜嗗悇閮ㄥ垎涔嬮棿鐨勪氦浜掍互鍙婂畠浠墍渚濊禆鐨勫簱銆�

鍥�3. 绯荤粺鏋舵瀯

4.     绯荤粺瀹夊叏鍜岄殣绉�

鍦ㄤ簯绯荤粺涓紝涓婁紶鐨勬枃浠朵細杩涜鑴辨晱澶勭悊锛屽鍚嶇瓑鏁忔劅淇℃伅浼氳鍒犻櫎锛屼絾骞撮緞鍜屾�у埆绛夋暟鎹垎鏋愭墍闇�鐨勪俊鎭細琚繚鐣欍�傛偅鑰呴殣绉佺敱娴忚鍣ㄧ澶勭悊锛屼笉浼氬悜鎴戜滑鐨勬湇鍔″櫒浼犺緭鍙瘑鍒偅鑰呰韩浠界殑淇℃伅銆傜敤鎴锋湁鏉冨垹闄ゆ暟鎹�備竴鏃﹀垹闄わ紝鍘熷鏁版嵁鍜屽鐞嗚繃鐨勬暟鎹兘灏嗕粠鏈嶅姟鍣ㄤ笂姘镐箙鍒犻櫎銆� 鍦ㄦ暟鎹畨鍏ㄤ紶杈撴柟闈紝璇ュ钩鍙伴噰鐢ㄥ姞瀵嗕紶杈撳拰韬唤楠岃瘉绛夋帾鏂斤紝闃叉鏁忔劅淇℃伅琚潪娉曡幏鍙栥�傚钩鍙伴噰鐢� 2048 浣� Rivest-Shamir-Adleman 绠楁硶锛圧SA锛夊鏁忔劅淇℃伅杩涜鍔犲瘑鍚庡啀浼犺緭銆侸SON 缃戠粶浠ょ墝锛圝WT锛夌敤浜庨獙璇佺敤鎴风殑鐧诲綍鐘舵�併�傚埄鐢ㄩ珮绾у姞瀵嗘爣鍑嗭紙ASE锛夌畻娉曪紝JWT 閫氳繃鍔犲瘑浼犺緭杩涜瀹夊叏楠岃瘉銆傚湪鏁版嵁瀛樺偍瀹夊叏鏂归潰锛岃骞冲彴璁剧疆浜嗗厑璁哥鍙g櫧鍚嶅崟锛屽鏁版嵁搴撳疄鏂戒弗鏍肩殑璁块棶闄愬埗锛屽苟澧炲姞浜嗗鍒嗗竷寮忔嫆缁濇湇鍔★紙DDOS锛夋敾鍑荤殑淇濇姢銆傛暟鎹簱鍜岀紦瀛樹腑鐨勬暟鎹娇鐢ㄥ姞瀵嗗瓨鍌ㄣ��

5.     浜戝钩鍙板鐞嗙粨鏋�

鎴戜滑閫氳繃涓�浜涙椿浣撴暟鎹潵灞曠ず璇ュ钩鍙扮殑瀹炵敤鎬с��

鍥�4. 涓�鍚嶅仴搴峰織鎰胯�呯殑 QNet 瀹氶噺缁撴灉銆傝娉㈣氨鍦ㄩ噺鍖栧墠宸插幓鍣�� 鍥�5. 12鍚嶅仴搴峰織鎰胯�呭拰 14 鍚� MCI 鎮h�呯殑缁熻鍒嗘瀽缁撴灉銆備负鏌ョ湅鍏朵粬鎸囨爣鐨勬柟妗嗗浘锛岃璁′簡涓�涓簳閮ㄦ粦鍔ㄦ爣绛炬爮銆侾 鍊煎皬浜� 0.05 鐨勭粍鍒細琚钩鍙版爣璁般�� 鍥�6. 12 鍚嶅仴搴峰織鎰胯�呭拰 14 鍚峂CI 鎮h�呯殑鐙珛鏍锋湰 t 妫�楠岀粨鏋溿�傛暟鎹互鍧囨暟 卤 鏍囧噯宸〃绀恒�� 鍥�7. 15 涓仴搴峰織鎰胯�呯殑浣撳唴娉㈣氨鍏充簬 tNAA/tCr 鐨� Bland-Altman 鍒嗘瀽銆傛瘡涓鏂瑰舰浠h〃姣忎釜鍏�=娉㈣氨鐨勯噺鍖栫粨鏋溿�傛í杞村拰绾佃酱鍒嗗埆琛ㄧず涓ょ閲忓寲鏂规硶閲忓寲缁撴灉鐨勫钩鍧囧�煎拰宸�笺��

鑷磋阿:

鏈伐浣滃緱鍒颁簡鍥藉閲嶇偣鐮斿彂璁″垝锛�2023YFF0714200锛夈�佸浗瀹惰嚜鐒剁瀛﹀熀閲戯紙62122064銆�61971361銆�62331021銆�62371410锛夈�佺寤虹渷鑷劧绉戝鍩洪噾锛�2023J02005銆�2021J011184锛夈�佸帵闂ㄥぇ瀛︽牎闀垮熀閲戯紙20720220063锛夊拰鍘﹂棬澶у鍗楀己鏉板嚭浜烘墠璁″垝鐨勯儴鍒嗚祫鍔┿�傛劅璋腑鍥界Щ鍔ㄦ彁渚涚殑浜戣绠楁湇鍔℃敮鎸併�傛劅璋㈤鍒╂郸鍏徃鐨勬蹇楀垰銆佹灄鑹澃鍜岀帇瀹舵锛屼互鍙婅仈褰卞叕鍙哥殑鏈卞鐓滃拰寮犵啓闈栨彁渚涚殑鎶�鏈敮鎸併�傝繕瑕佹劅璋� Stephen W. Provencher 鍏紑浜� LCModel鐨勬簮鐮併��

 

鍙傝�冩枃鐚�:

[1]      G.S. Malhi, M. Valenzuela, W. Wen, P. Sachdev, Magnetic resonance spectroscopy and its applications in psychiatry, Aust. N. Z. J. Psychiatry (1) (2002) 31鈥�43.

[2]      S. Behrens, H. Laue, M. Althaus, T. Boehler, B. Kuemmerlen, H.K. Hahn, H.-O. Peitgen, Computer assistance for MR based diagnosis of breast cancer: Present and future challenges, Comput. Med. Imaging Graph. 31 (4鈥�5) (2007) 236鈥�247. 71-95, 2017.

[3]      A. G枚kcay, O. Kitis, O. Ekmekci, H. Karasoy, R. Sener, Proton MR spectroscopy in Rett syndrome, Med. Imaging Graph. 26 (4) (2002) 271鈥�275.

[4]      R. Sener, Proton MR spectroscopy of craniopharyngiomas, Comput. Med. Imaging Graph. 25 (5) (2001) 417鈥�422.

[5]      J. Near, A.D. Harris, C. Juchem, R. Kreis, M. Marja艅ska, G. 脰z, J. Slotboom, M. Wilson, C. Gasparovic, Preprocessing, analysis and quantification in singlevoxel magnetic resonance spectroscopy: Experts鈥� consensus recommendations, NMR Biomed. 34 (5) (2021) e4257.

[6]      D.J. Drost, W.R. Riddle, G.D. Clarke, Proton magnetic resonance spectroscopy in the brain: Report of AAPM MR Task Group# 9, Med. Phys. 29 (9) (2002) 2177鈥�2197.

[7]      J.-B. Poullet, D.M. Sima, S. Van Huffel, MRS signal quantitation: A review of time-and frequency-domain methods, J. Magn. Reson. 195 (2) (2008) 134鈥�144.

[8]      P.K. Mandal, In vivo proton magnetic resonance spectroscopic signal processing for the absolute quantitation of brain metabolites, Eur. J. Radiol. 81 (4) (2012) e653鈥揺664.

[9]      J. Near, R. Edden, C.J. Evans, R. Paquin, A. Harris, P. Jezzard, Frequency and phase drift correction of magnetic resonance spectroscopy data by spectral registration in the time domain, Magn. Reson. Med. 73 (1) (2015) 44鈥�50. 6, pp. 737-758, 2010.

[10]    L. Vanhamme, A. van den Boogaart, S. Van Huffel, Improved method for accurate and efficient quantification of MRS data with use of prior knowledge, J. Magn. Reson. 129 (1) (1997) 35鈥�43.

[11]    J.F. Jansen, W.H. Backes, K. Nicolay, M.E. Kooi, 1H MR spectroscopy of the brain: Absolute quantification of metabolites, Radiology 240 (2) (2006) 318鈥�332.

[12]    J. Van der Veen, R. De Beer, P. Luyten, D. Van Ormondt, Accurate quantification of in vivo 31P NMR signals using the variable projection method and prior knowledge, Magn. Reson. Med. 6 (1) (1988) 92鈥�98.

[13]    S.W. Provencher, Estimation of metabolite concentrations from localized in vivo proton NMR spectra, Magn. Reson. Med. 30 (6) (1993) 672鈥�679.

[14]    H. Ratiney, M. Sdika, Y. Coenradie, S. Cavassila, D.V. Ormondt, D. GraveronDemilly, Time-domain semi-parametric estimation based on a metabolite basis set, NMR Biomed. 18 (1) (2005) 1鈥�13.

[15]    J.-B. Poullet, D.M. Sima, A.W. Simonetti, B. De Neuter, L. Vanhamme, P. Lemmerling, S. Van Huffel, An automated quantitation of short echo time MRS spectra in an open source software environment: AQSES, NMR Biomed. 20 (5) (2007) 493鈥�504.

[16]    S. Tapper, M. Mikkelsen, B.E. Dewey, H.J. Z枚llner, S.C. Hui, G. Oeltzschner, R.A. Edden, Frequency and phase correction of J-difference edited MR spectra using deep learning, Magn. Reson. Med. 85 (4) (2021) 1755鈥�1765.

[17]    D.J. Ma, H.A.-M. Le, Y. Ye, A.F. Laine, J.A. Lieberman, D.L. Rothman, S.A. Small, J. Guo, MR spectroscopy frequency and phase correction using convolutional neural networks, Magn. Reson. Med. 87 (4) (2022) 1700鈥�1710.

[18]    D. Chen, W. Hu, H. Liu, Y. Zhou, T. Qiu, Y. Huang, Z. Wang, M. Lin, L. Lin, Z. Wu, J. Wang, H. Chen, X. Chen, G. Yan, D. Guo, J. Lin, X. Qu, Magnetic resonance spectroscopy deep learning denoising using few in vivo data, IEEE Trans. Comput. Imaging 9 (2023) 448鈥�458.

[19]    J. Jang, H.H. Lee, J.-A. Park, H. Kim, Unsupervised anomaly detection using generative adversarial networks in 1H-MRS of the brain, J. Magn. Reson. 325 (2021) 106936.

[20]    N. Hatami, M. Sdika, H. Ratiney, Magnetic resonance spectroscopy quantification using deep learning, in: International Conference on Medical Image Computing and Computer Assisted Intervention, 2018, pp. 467鈥�475.

[21]    M. Chandler, C. Jenkins, S. Shermer, F. Langbein, MRSNet: metabolite quantification from edited magnetic resonance spectra with convolutional neural networks, 2019, arXiv preprint arXiv:1909.03836.

[22]    S.S. Gurbani, S. Sheriff, A.A. Maudsley, H. Shim, L.A. Cooper, Incorporation of a spectral model in a convolutional neural network for accelerated spectral fitting, Magn. Reson. Med. 81 (5) (2019) 3346鈥�3357.

[23]    H.H. Lee, H. Kim, Intact metabolite spectrum mining by deep learning in proton magnetic resonance spectroscopy of the brain, Magn. Reson. Med. 82 (1) (2019) 33鈥�48.

[24]    D. Chen, M. Lin, H. Liu, J. Li, Y. Zhou, T. Kang, L. Lin, Z. Wu, J. Wang, J. Li, J. Lin, X. Chen, D. Guo, X. Qu, Magnetic resonance spectroscopy quantification aided by deep estimations of imperfection factors and overall macromolecular signal, 2023, arXiv preprint arXiv:2306.09681.

[25]    A. Naressi, C. Couturier, J. Devos, M. Janssen, C. Mangeat, R.d. Beer, D. Graveron-Demilly, Java-based graphical user interface for the MRUI quantitation package, Magn. Reson. Mater. Phys. Biol. Med. 12 (2001) 141鈥�152.

[26]    D. Stefan, F. Di Cesare, A. Andrasescu, E. Popa, A. Lazariev, E. Vescovo, O. Strbak, S. Williams, Z. Starcuk, M. Cabanas, et al., Quantitation of magnetic resonance spectroscopy signals: The jMRUI software package, Meas. Sci. Technol. 20 (10) (2009) 104035.

[27]    M. Wilson, G. Reynolds, R.A. Kauppinen, T.N. Arvanitis, A.C. Peet, A constrained least-squares approach to the automated quantitation of in vivo 1H magnetic resonance spectroscopy data, Magn. Reson. Med. 65 (1) (2011) 1鈥�12.

[28]    W.T. Clarke, C.J. Stagg, S. Jbabdi, FSL-MRS: An end-to-end spectroscopy analysis package, Magn. Reson. Med. 85 (6) (2021) 2950鈥�2964.

[29]    G. Oeltzschner, H.J. Z枚llner, S.C. Hui, M. Mikkelsen, M.G. Saleh, S. Tapper, R.A. Edden, Osprey: Open-source processing, reconstruction & estimation of magnetic resonance spectroscopy data, J. Neurosci. Methods 343 (2020) 108827.

[30]    R.A. Edden, N.A. Puts, A.D. Harris, P.B. Barker, C.J. Evans, Gannet: A batchprocessing tool for the quantitative analysis of gamma-aminobutyric acid鈥揺dited MR spectroscopy spectra, J. Magn. Reson. Imaging 40 (6) (2014) 1445鈥�1452. 1413-1457, 2004.

[31]    R. Simpson, G.A. Devenyi, P. Jezzard, T.J. Hennessy, J. Near, Advanced processing and simulation of MRS data using the FID appliance (FID-A)鈥攁n open source, MATLAB-based toolkit, Magn. Reson. Med. 77 (1) (2017) 23鈥�33.

[32]    S.C. Hui, M.G. Saleh, H.J. Z枚llner, G. Oeltzschner, H. Fan, Y. Li, Y. Song, H. Jiang, J. Near, H. Lu, et al., MRSCloud: A cloud-based MRS tool for basis set simulation, Magn. Reson. Med. 88 (5) (2022) 1994鈥�2004.

[33]    Z. Wang, D. Guo, Z. Tu, Y. Huang, Y. Zhou, J. Wang, L. Feng, D. Lin, Y. You, T. Agback, et al., A sparse model-inspired deep thresholding network for exponential signal reconstruction-application in fast biological spectroscopy, IEEE Trans. Neural Netw. Learn. Syst. (2022).

[34]    S. Gurbani, B. Weinberg, L. Cooper, E. Mellon, E. Schreibmann, S. Sheriff, A. Maudsley, M. Goryawala, H.-K. Shu, H. Shim, The brain imaging collaboration suite (BrICS): A cloud platform for integrating whole-brain spectroscopic MRI into the radiation therapy planning workflow, Tomogr. 5 (1) (2019) 184鈥�191.

[35]    Q. Yang, Z. Wang, K. Guo, C. Cai, X. Qu, Physics-driven synthetic data learning for biomedical magnetic resonance: The imaging physics-based data synthesis paradigm for artificial intelligence, IEEE Signal Process. Mag. 40 (2) (2023) 129鈥�140.

[36]    Y. Zhou, C. Qian, J. Li, Z. Wang, Y. Hu, B. Qu, L. Zhu, J. Zhou, T. Kang, J. Lin, Q. Hong, J. Dong, D. Guo, X. Qu, CloudBrain-ReconAI: An online platform for MRI reconstruction and image quality evaluation, 2022, arXiv preprint arXiv: 2212.01878.

[37]    H. Xue, S. Inati, T.S. S酶rensen, P. Kellman, M.S. Hansen, Distributed MRI reconstruction using gadgetron-based cloud computing, Magn. Reson. Med. 73 (3) (2015) 1015鈥�1025.

[38]    S. Mori, D. Wu, C. Ceritoglu, Y. Li, A. Kolasny, M.A. Vaillant, A.V. Faria, K. Oishi, M.I. Miller, MRICloud: delivering high-throughput MRI neuroinformatics as cloud-based software as a service, Comput. Sci. Eng. 18 (5) (2016) 21鈥�35.

[39]    F. Milletari, J. Frei, M. Aboulatta, G. Vivar, S.-A. Ahmadi, Cloud deployment of high-resolution medical image analysis with TOMAAT, IEEE J. Biomed. Health Inform. 23 (3) (2018) 969鈥�977.

[40]    C.G. Xanthis, A.H. Aletras, CoreMRI: A high-performance, publicly available MR simulation platform on the cloud, PLoS One 14 (5) (2019) e0216594.

[41]    H. Wang, L. Tan, H.-F. Wang, Y. Liu, R.-H. Yin, W.-Y. Wang, X.-L. Chang, T. Jiang, J.-T. Yu, Magnetic resonance spectroscopy in Alzheimer鈥檚 disease: Systematic review and meta-analysis, J. Alzheimers Dis. 46 (4) (2015) 1049鈥�1070.

[42]    A. Kherchouche, O. Ben-Ahmed, C. Guillevin, B. Tremblais, A. Julian, C. Fernandez-Maloigne, R. Guillevin, Attention-guided neural network for early dementia detection using MRS data, Comput. Med. Imaging Graph. (2022) 102074.

[43]    P. Lazen, P.L. Cardoso, S. Sharma, C. Cadrien, T. Roetzer-Pejrimovsky, J. Furtner, B. Strasser, L. Hingerl, A. Lipka, M. Preusser, W. Marik, W. Bogner, G. Widhalm, K. R枚ssler, S. Trattnig, G. Hangel, A comparison of 7 Tesla MR spectroscopic imaging and 3 Tesla MR fingerprinting for tumor localization in glioma patients, 2023, arXiv preprint arXiv:2304.05254.

[44]    S. Nakae, K. Murayama, H. Sasaki, M. Kumon, Y. Nishiyama, S. Ohba, K. Adachi, S. Nagahisa, T. Hayashi, J. Inamasu, et al., Prediction of genetic subgroups in adult supra tentorial gliomas by pre-and intraoperative parameters, J. Neurooncol. 131 (2017) 403鈥�412.

[45]    T. Kazda, M. Bulik, P. Pospisil, R. Lakomy, M. Smrcka, P. Slampa, R. Jancalek, Advanced MRI increases the diagnostic accuracy of recurrent glioblastoma: Single institution thresholds and validation of MR spectroscopy and diffusion weighted MR imaging, NeuroImage Clin. 11 (2016) 316鈥�321.

[46]    L. Mazuel, C. Chassain, B. Jean, B. Pereira, A. Cladi猫re, C. Speziale, F. Durif, Proton MR spectroscopy for diagnosis and evaluation of treatment efficacy in Parkinson disease, Radiology 278 (2) (2016) 505鈥�513.

[47]    A. Flamez, W. Wiels, P. Van Schuerbeek, J. De Mey, J. De Keyser, C. Baeken, The influence of one session of low frequency rTMS on pre-supplementary motor area metabolites in late stage Parkinson鈥檚 disease, Clin. Neurophysiol. 130 (8) (2019) 1292鈥�1298.

[48]    H.-Y. Kim, Statistical notes for clinical researchers: the independent samples t-test, Restor. Dent. Endod. 44 (3) (2019).

[49]    M. Terpstra, I. Cheong, T. Lyu, D.K. Deelchand, U.E. Emir, P. Bedna艡铆k, L.E. Eberly, G. 脰z, Test-retest reproducibility of neurochemical profiles with shortecho, single-voxel MR spectroscopy at 3T and 7T, Magn. Reson. Med. 76 (4) (2016) 1083鈥�1091.

[50]    I. Tk谩膷, G. 脰z, G. Adriany, K. U臒urbil, R. Gruetter, In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: Metabolite quantification at 4T vs. 7T, Magn. Reson. Med. 62 (4) (2009) 868鈥�879.

[51]    V. Govindaraju, K. Young, A.A. Maudsley, Proton NMR chemical shifts and coupling constants for brain metabolites, NMR Biomed. 13 (3) (2000) 129鈥�153.

[52]    R. Kreis, The trouble with quality filtering based on relative C ram茅r-R ao lower bounds, Magn. Reson. Med. 75 (1) (2016) 15鈥�18.

[53]    A. Metastasio, P. Rinaldi, R. Tarducci, E. Mariani, F.T. Feliziani, A. Cherubini, G.P. Pelliccioli, G. Gobbi, U. Senin, P. Mecocci, Conversion of MCI to dementia: Role of proton magnetic resonance spectroscopy, Neurobiol. Aging 27 (7) (2006) 926鈥�932.

[54]    K. Kantarci, Proton MRS in mild cognitive impairment, J. Magn. Reson. Imaging 37 (4) (2013) 770鈥�777.

[55]    S. Tumati, S. Martens, A. Aleman, Magnetic resonance spectroscopy in mild cognitive impairment: Systematic review and meta-analysis, Neurosci. Biobehav. Rev. 37 (10) (2013) 2571鈥�2586.

 



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有