4.2.1 等差数列的概念1 (概念、通项公式) 您所在的位置:网站首页 等差数列递减公式 4.2.1 等差数列的概念1 (概念、通项公式)

4.2.1 等差数列的概念1 (概念、通项公式)

2024-04-20 02:56| 来源: 网络整理| 查看: 265

\({\color{Red}{欢迎到学科网下载资料学习 }}\) [ 【基础过关系列】高二数学同步精品讲义与分层练习(人教A版2019)] ( https://www.zxxk.com/docpack/2875423.html) \({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

选择性第二册同步巩固,难度2颗星!

基础知识 定义

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列, 这个常数叫做等差数列的公差,记为\(d\) . 代数形式:\(a_n-a_{n-1}=d\) (\(n≥2,d\)是常数) 解释 (1)公差是每一项减前一项,常数指的是与\(n\)无关; (2)公差\(d\in R\),当\(d=0\)时,数列为常数列;当\(d>0\)时,数列为递增数列;当\(d0\),且\(a_2\),\(a_5\)是\(x^2-12x+27=0\)的两根,则\((a_3+a_4 )^2-a_7=\)\(\underline{\quad \quad}\) . 解析 \(\because a_2\),\(a_5\)是\(x^2-12x+27=0\)的两根, \(\therefore\left\{\begin{array}{l} a_2=3 \\ a_5=9 \end{array}\right.\)或 \(\left\{\begin{array}{l} a_2=9 \\ a_5=3 \end{array}\right.\), 又\(\because\)公差\(d>0\), \(\therefore\left\{\begin{array}{l} a_2=3 \\ a_5=9 \end{array}\right.\), 则 \(\left\{\begin{array}{c} a_1+d=3 \\ a_1+4 d=9 \end{array}\right.\),解得 \(\left\{\begin{array}{l} a_1=1 \\ \mathrm{~d}=2 \end{array}\right.\), \(\therefore a_3=5\),\(a_4=7\),\(a_7=13\), \(\therefore (a_3+a_4 )^2-a_7=12^2-13=131\).  

【巩固练习】

1.在数列\(\{a_n \}\)中,\(a_1=2\),\(a_{n+1}=a_n+4\),若\(a_n=2022\),则\(n=\)(  )  A.\(508\) \(\qquad \qquad \qquad \qquad\) B.\(507\) \(\qquad \qquad \qquad \qquad\) C.\(506\) \(\qquad \qquad \qquad \qquad\) D.\(505\)  

2.等差数列\(1,-1,-3,…,-89\)的项数是(  )  A.\(92\) \(\qquad \qquad \qquad \qquad\) B.\(47\) \(\qquad \qquad \qquad \qquad\) C.\(46\) \(\qquad \qquad \qquad \qquad\) D.\(45\)  

3.已知\(\{a_n \}\)是公差为\(1\)的等差数列,且\(a_2^2=a_1 a_5\),则\(a_1=\)(  )  A.\(1\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{1}{2}\) \(\qquad \qquad \qquad \qquad\) C.\(\dfrac{1}{4}\) \(\qquad \qquad \qquad \qquad\) D.\(2\)  

4.已知等差数列\(\{a_n \}\)中,\(a_2=-3\),\(a_3=-5\),则\(a_9=\)(  )  A.\(-10\) \(\qquad \qquad \qquad \qquad\) B.\(-17\) \(\qquad \qquad \qquad \qquad\) C.\(-19\) \(\qquad \qquad \qquad \qquad\) D.\(-21\)  

5.已知正项数列\(\{a_n \}\)的首项为\(1\),\(\{a_n^2\}\)是公差为\(3\)的等差数列,则使得\(a_n>6\)成立的\(n\)的最小值为\(\underline{\quad \quad}\) .  

6.若一个三角形三边长成公差为\(2\)的等差数列,且最大角为\(120°\),则这个三角形的面积为\(\underline{\quad \quad}\) .  

参考答案

答案 \(C\) 解析 因为数列\(\{a_n \}\)中,\(a_1=2\),\(a_{n+1}=a_n+4\), 即\(a_1=2\),\(a_{n+1}-a_n=4\), 所以数列\(\{a_n \}\)是以\(2\)为首项,以\(4\)为公差的等差数列, \(a_n=2+4(n-1)=2022\),则\(n=506\). 故选:\(C\).

答案 \(C\) 解析 \(a_1=1\),\(d=(-1)-1=-2\), 故\(a_n=a_1+(n-1)d=3-2n\), 令\(-89=3-2n\),解得\(n=46\).

答案 \(B\) 解析 由\(\{a_n \}\)是公差为\(1\)的等差数列,且\(a_2^2=a_1 a_5\), 得\((a_1+1)^2=a_1 (a_1+4)\), 所以\(2a_1-1=0\),解得\(a_1=\dfrac{1}{2}\). 故选:\(B\).

答案 \(B\) 解析 依题意得 \(\left\{\begin{array}{c} a_1+d=-3 \\ a_1+2 d=-5 \end{array}\right.\),解得\(a_1=-1\),\(d=-2\) \(\therefore a_9=a_1+8d=-1+(-2)×8=-17\), 故选:\(B\).

答案 \(13\) 解析 \(\because\)正项数列\(\{a_n \}\)的首项为\(1\),\(\{a_n^2\}\)是公差为\(3\)的等差数列, \(\therefore\) 依题意得,\(a_n^2=1+3(n-1)=3n-2\), 故 \(a_n=\sqrt{3 n-2}\).令 \(\sqrt{3 n-2}>6\),得\(3n-2>36\),解得\(n>\dfrac{38}{3}\), \(\because n\in N^*\),\(\therefore\) 使得\(a_n>6\)成立的\(n\)的最小值为\(13\).

答案 \(\dfrac{15 \sqrt{3}}{4}\) 解析 由题意可设,三条边长分别为\(a\),\(a+2\),\(a+4\), 则 \(\left\{\begin{array}{l} a+a+2>a+4 \\ a>0 \end{array}\right.\),解得\(a>2\), 三角形最大角为\(120°\),则其最长的边的长度为\(a+4\), \(\cos 120^{\circ}=\dfrac{a^2+(a+2)^2-(a+4)^2}{2 a \cdot(a+2)}=-\dfrac{1}{2}\), 化简整理可得\(a^2-a-6=0\),解得\(a=3\)或\(a=-2\)(舍去), 则该三角形的三条边长分别为\(3\),\(5\),\(7\), 故这个三角形的面积为\(\dfrac{1}{2} \times 3 \times 5 \times \sin 120^{\circ}=\dfrac{15 \sqrt{3}}{4}\).  

【题型3】实际应用问题

【典题1】 梯子的最高一级宽\(33 cm\),最低一级宽\(110 cm\),中间还有\(10\)级,各级宽度依次成等差数列,计算中间各级的宽度. 解析 设梯子的第\(n\)级的宽为\(a_n cm\),其中最高一级宽为\(a_1 cm\),则数列\(\{a_n \}\)是等差数列. 由题意,得\(a_1=33\),\(a_{12}=110\),\(n=12\), 则\(a_{12}=a_1+11d\). 所以\(110=33+11d\),解得\(d=7\). 所以\(a_2=33+7=40\),\(a_3=40+7=47\),…,\(a_{11}=96+7=103\), 即梯子中间各级的宽度从上到下依次是\(40 cm\),\(47 cm\),\(54 cm\),\(61 cm\),\(68 cm\), \(75 cm\),\(82 cm\),\(89 cm\),\(96 cm\),\(103 cm\).  

【巩固练习】

1.《周髀算经》中一个问题:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是\(37.5\)尺,芒种的日影子长为\(4.5\)尺,则冬至的日影子长为(  )  A.\(15.5\)尺 \(\qquad \qquad \qquad \qquad\) B.\(12.5\)尺 \(\qquad \qquad \qquad \qquad\) C.\(10.5\)尺 \(\qquad \qquad \qquad \qquad\) D.\(9.5\)尺  

2.《莱茵德纸草书》是世界上最古老的数学著作之一,书中有这样的一道题:把\(120\)个面包分成\(5\)份,使每份的面包数成等差数列,且较多的三份之和恰好是较少的两份之和的\(7\)倍,若将这\(5\)份面包数按由少到多的顺序排列,则第\(4\)份面包的数量为(  )  A.\(15\) \(\qquad \qquad \qquad \qquad\) B.\(25\) \(\qquad \qquad \qquad \qquad\) C.\(35\) \(\qquad \qquad \qquad \qquad\) D.\(45\)  

3.有一正四棱台形楼顶,其中一个侧面中最上面一行铺瓦\(30\)块,总共需要铺瓦\(15\)行,并且下一行比其上一行多铺\(3\)块瓦,求该侧面最下面一行需铺瓦多少块?    

参考答案

答案 \(A\) 解析 由题意,从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列\(\{a_n \}\),冬至、立春、春分的日影子长的和是\(37.5\)尺,芒种的日影子长为\(4.5\)尺, 所以 \(\left\{\begin{array}{l} a_1+a_4+a_7=3 a_1+9 d=37.5 \\ a_{12}=a_1+11 d=4.5 \end{array}\right.\),解得\(d=-1\),\(a_1=15.5\). 所以冬至的日影子长为\(15.5\)尺. 故选:\(A\).

答案 \(C\) 解析 设等差数列的公差为\(d\),五份分别设为\(x-2d\),\(x-d\),\(x\),\(x+d\),\(x+2d\), 则\(\left\{\begin{array}{l} x-2 d+x-d+x+x+d+x+2 d=240 \\ 3 x+3 d=7(2 x-3 d) \end{array}\right.\), 解得\(x=24\),\(d=11\), \(\therefore\)第\(4\)份面包的数量为\(x+d=35\). 故选:\(C\).

答案 \(72\) 解析 设从上面开始第\(n\)行铺瓦\(a_n\)块, 则数列\(\{a_n \}\)是首项为\(30\),公差为\(3\)的等差数列. 则\(a_{15}=a_1+14d=30+14×3=72\), 即该侧面最下面一行应铺瓦\(72\)块.

分层练习 【A组---基础题】

1.等差数列\(-3,1,5,…\)的第\(15\)项为(  )  A.\(40\) \(\qquad \qquad \qquad \qquad\) B.\(53\) \(\qquad \qquad \qquad \qquad\) C.\(63\) \(\qquad \qquad \qquad \qquad\)D.\(76\)  

2.下列通项公式表示的数列为等差数列的是(  )  A. \(a_n=\dfrac{n}{n+1}\) \(\qquad \qquad \qquad\) B.\(a_n=n^2-1\) \(\qquad \qquad \qquad\) C.\(a_n=5^n\) \(\qquad \qquad \qquad\) D.\(a_n=3n-1\)  

3.已知\(\{a_n \}\)是公差为3的等差数列,\(\{b_n\}\)是公差为\(4\)的等差数列,且\(b_n\in N^*\),则\(\{a_{b_n}\}\)为(  )  A.公差为\(7\)的等差数列 \(\qquad \qquad \qquad \qquad\) B.公差为\(12\)的等差数列  C.公比为\(12\)的等比数列 \(\qquad \qquad \qquad \qquad\) D.公比为\(81\)的等比数列  

4.已知 \(\left\{\dfrac{1}{a_n+1}\right\}\)是等差数列,且\(a_1=\dfrac{1}{4}\),\(a_4=1\),则\(a_11=\)(  )  A.\(-12\) \(\qquad \qquad \qquad \qquad\) B.\(-11\) \(\qquad \qquad \qquad \qquad\) C.\(-6\) \(\qquad \qquad \qquad \qquad\) D.\(-5\)  

5.(多选)已知数列\(\left\{\dfrac{a_n}{n+2^n}\right\}\)是首项为\(1\),公差为\(d\)的等差数列,则下列判断正确的是(  )  A.\(a_1=3\) \(\qquad \qquad \qquad \qquad \qquad \qquad\) B.若\(d=1\),则\(a_n=n^2+2^n\)  C.\(a_2\)可能为\(6\) \(\qquad \qquad \qquad \qquad \qquad\) D.\(a_1,a_2,a_3\)可能成等差数列  

6.已知等差数列\(\{a_n \}\)的各项均为正整数,且\(a_8=2021\),则\(a_1\)的最小值是\(\underline{\quad \quad}\).  

7.《九章算术》“竹九节”问题中指出,若有一根九节的竹子,自上而下各节的容积成等差数列,上\(5\)节的容积为\(4\)升,下\(4\)节的容积为\(5\)升,问第五节的容积是多少升?    

8.已知数列\(\{a_n \}\)的通项公式是\(a_n=7^{n+2}\),求证:数列\(\{\lg⁡a_n \}\)是等差数列.    

9.已知数列\(\{a_n \}\)满足:\(a_1=2\), \(a_n=2-\dfrac{9}{a_{n-1}+4}(n>1)\),记 \(b_n=\dfrac{1}{a_n+1}\).   (1)求证:数列\(\{b_n\}\)等差数列;\(\qquad \qquad\) (2)求\(a_n\).    

10.各项不为\(0\)的数列\(\{a_n \}\)满足 \(\dfrac{a_n}{a_{n-1}}=\dfrac{1}{3 a_{n-1}+1}\left(n \geq 2, \quad n \in N^*\right)\),且\(a_2=-1\).   (1)求证:数列 \(\left\{\dfrac{1}{a_n}\right\}\)为等差数列;   (2)若 \(\dfrac{a_{n+1}}{a_n} \geq \lambda\)对任意\(n\in N^*\)恒成立,求实数\(λ\)的取值范围.    

参考答案

答案 \(B\) 解析 \(a_1=-3\),\(d=1-(-3)=4\), 故\(a_{15}=a_1+(15-1)d=-3+14×4=53\).

答案 \(D\) 解析 \(\because\)等差数列的通项是关于\(n\)的一次函数,在四个选项中,只有\(D\)是关\(n\)的一次函数, \(\therefore\)所给的四个通项中只有\(D\)表示等差数列, 故选:\(D\).

答案 \(B\) 解析 \(\because\)\(\{a_n \}\)是公差为\(3\)的等差数列,\(\{b_n\}\)是公差为\(4\)的等差数列,且\(b_n\in N^*\), \(\therefore a_n=a_1+3(n-1)\),\(b_n=b_1+4(n-1)\), 则\(a_{b_n}=a_1+3(b_n-1)=a_1+3[b_1+4(n-1)]=a_1+3b_1+12(n-1)\). \(\therefore \{a_{b_n}\}\)为公差为\(12\)的等差数列. 故选:\(B\).

答案 \(C\) 解析 设等差数列 \(\left\{\dfrac{1}{a_n+1}\right\}\)的公差为d, \(\because \dfrac{1}{a_1+1}=\dfrac{4}{5}\), \(\dfrac{1}{a_4+1}=\dfrac{1}{2}\). \(\therefore \dfrac{1}{2}=\dfrac{4}{5}+3 d\),解得 \(d=-\dfrac{1}{10}\). \(\therefore \dfrac{1}{a_{11}+1}=\dfrac{4}{5}+10 \times\left(-\dfrac{1}{10}\right)=-\dfrac{1}{5}\),\(\therefore a_{11}=6\). 故选:\(C\).

答案 \(ACD\) 解析 由已知可得数列\(\left\{\dfrac{a_n}{n+2^n}\right\}\)的通项公式为 \(\dfrac{a_n}{n+2^n}=1+(n-1) d\), 当\(n=1\)时, \(\dfrac{a_1}{1+2}=1\),解得\(a_1=3\),故\(A\)正确; 若\(d=1\),则 \(\dfrac{a_n}{n+2^n}=1+(n-1) \times 1=n\), 所以\(a_n=n^2+n2^n\),故\(B\)错误; 若\(d=0\),则\(a_n=n+2^n\),\(a_2=6\),故\(C\)正确; 若\(a_1,a_2,a_3\)成等差数列,则\(2a_2=a_1+a_3\), 即\(12+12d=14+22d\),解得\(d=-\dfrac{1}{5}\), 故\(a_1,a_2,a_3\)可能成等差数列,故\(D\)正确. 故选:\(ACD\).

答案 \(5\) 解析 设等差数列\(\{a_n \}\)的公差为\(d(d\in N^*)\), 由\(a_8=a_1+7d\),得\(a_1=2021-7d\); 由于\(2021=7×288+5\),所以\(a_1=7×288+5-7d=7(288-d)+5\), 即当\(d=288\)时,\(a_1\)有最小值\(5\).

答案 \(1\) 解析 设自上而下各节的容积构成等差数列\(\{a_n \}\),公差为\(d\), 则 \(\left\{\begin{array}{l} a_1+a_2+a_3+a_4+a_5=4 \\ a_6+a_7+a_8+a_9=5 \end{array}\right.\), 化简得 \(\left\{\begin{array}{l} 5 a_1+10 d=4 \\ 4 a_1+26 d=5 \end{array}\right.\),解得 \(\left\{\begin{array}{l} a_1=0.6 \\ d=0.1 \end{array}\right.\), 故\(a_5=a_1+4d=1\).

证明 设\(b_n=\lg⁡a_n=\lg⁡7^{n+2}=(n+2)\lg⁡7\), 则\(b_{n+1}=[(n+1)+2]\lg⁡7=(n+3)\lg⁡7\), 则\(b_{n+1}-b_n=(n+3)\lg⁡7-(n+2)\lg⁡7=\lg⁡7\). 所以数列\(\{b_n \}\)是等差数列, 即数列\(\{\lg⁡a_n \}\)是等差数列.

答案 (1)略;(2) \(a_n=\dfrac{3}{n}-1\). 解析 (1)证明:由 \(a_n=2-\dfrac{9}{a_{n-1}+4}(n>1)\)得 \(a_n+1=3-\dfrac{9}{a_{n-1}+4}=\dfrac{3 a_{n-1}+3}{a_{n-1}+4}(n>1)\), 即 \(\dfrac{1}{a_n+1}=\dfrac{1}{a_{n-1}+1}+\dfrac{1}{3}(n>1) \Rightarrow \dfrac{1}{a_n+1}-\dfrac{1}{a_{n-1}+1}=\dfrac{1}{3}(n>1)\), 而 \(b_n=\dfrac{1}{a_n+1}\),所以 \(b_{n+1}-b_n=\dfrac{1}{3}(n>1)\), 所以数列\(\{b_n\}\)等差数列; (2)由(1)结合\(a_1=2\),可得\(b_1=\dfrac{1}{3}\), 所以\(b_n=b_1+(n-1)d=\dfrac{1}{3}+\dfrac{1}{3}{n-1}=\dfrac{1}{3} n\), 故 \(a_n=\dfrac{1}{b_n}-1=\dfrac{3}{n}-1\).

答案 (1) 略;(2)\(\left(-∞,-\dfrac{1}{2}\right]\). 解析 (1)证明:各项不为\(0\)的数列\(\{a_n \}\)满足\(\dfrac{a_n}{a_{n-1}}=\dfrac{1}{3 a_{n-1}+1}\left(n \geq 2, n \in N^*\right)\), 变为 \(a_n=\dfrac{a_{n-1}}{3 a_{n-1}+1}\), 两边取倒数:可得 \(\dfrac{1}{a_n}=\dfrac{1}{a_{n-1}}+3\),即\(\dfrac{1}{a_n}-\dfrac{1}{a_{n-1}}=3\), 由\(a_2=-1\), \(\therefore \dfrac{1}{-1}-\dfrac{1}{a_1}=3\),解得\(a_1=-\dfrac{1}{4}\). \(\therefore\)数列 \(\left\{\dfrac{1}{a_n}\right\}\)为等差数列,公差为\(3\),首项为\(-4\). (2)解:由(1)可得: \(\dfrac{1}{a_n}=-4+3(n-1)=3 n-7\), 由 \(\dfrac{a_{n+1}}{a_n} \geq \lambda\)对任意\(n\in N^*\)恒成立, \(\therefore \lambda \leq \dfrac{3 n-7}{3 n-4}\)的最小值. 令 \(f(n)=\dfrac{3 n-7}{3 n-4}=\dfrac{3 n-4-3}{3 n-4}=1-\dfrac{3}{3 n-4}\), \(n=1\)时,\(f(1)=4\);\(n=2\)时,\(f(2)=-\dfrac{1}{2}\); \(n≥3\)时,\(f(n)\)单调递增,\(n→+∞\)时,\(f(n)→1\). \(\therefore λ≤-\dfrac{1}{2}\), \(\therefore\)实数\(λ\)的取值范围是\(\left(-∞,-\dfrac{1}{2}\right]\).  

【B组---提高题】

1.(多选)已知无穷等差数列\(\{a_n \}\)的公差\(d\in N^*\),且\(5,17,23\)是\(\{a_n \}\)中的三项,则下列结论正确的是(  )  A.\(d\)的最大值是\(6\) \(\qquad \qquad \qquad \qquad\) B.\(2a_2≤a_8\)  C.\(a_n\)一定是奇数 \(\qquad \qquad \qquad \qquad\) D.\(137\)一定是数列\(\{a_n \}\)中的项  

2.在\(△ABC\)中,角\(A\),\(B\),\(C\)的对边分别为\(a\),\(b\),\(c\),角\(A\),\(B\),\(C\)成等差数列,则 \(\dfrac{a+c}{b}\)的取值范围是\(\underline{\quad \quad}\) .  

3.数列\(\{a_n \}\)中,\(a_1=1\),\(a_n=3a_{n-1}+3^n-1(n\in N^*,n≥2)\),若存在实数\(λ\),使得数列 \(\left\{\dfrac{a_n+\lambda}{3^n}\right\}\)为等差数列,则\(λ=\)\(\underline{\quad \quad}\).  

4.已知数列\(\{a_n \}\)满足\(a_{n+1}=\dfrac{1+a_n}{3-a_n}\left(n \in \boldsymbol{N}^*\right)\),且\(a_1=0\).   (1)求\(a_2\),\(a_3\)的值;   (2)是否存在一个实常数\(λ\),使得数列\(\left\{\dfrac{1}{a_n-\lambda}\right\}\)为等差数列,请说明理由.    

参考答案

答案 \(ABD\) 解析 \(\because\)无穷等差数列\(\{a_n \}\)的公差\(d\in N^*\),且\(5,17,23\)是\(\{a_n \}\)中的三项, \(\therefore\)设\(\left\{\begin{array}{l} 17-5=12=m d \\ 23-17=6=n d \end{array}\right.\),解得\(d=\dfrac{6}{m-n}\), \(\therefore d\)的最大值为\(6\),故\(A\)正确; \(\because a_1≤5,d\in N^*\), \(\therefore 2a_2-a_8=a_1-5d≤0\),故\(B\)正确; \(\because d=\dfrac{6}{m-n}\), \(\therefore\) 当\(m-n=2\)时,\(d=3\),数列可能为\(5,8,11,14,17,20,23,…\),故\(C\)错误; \(\because 137=23+19×6\), \(\therefore 137\)一定是等差数列\(\{a_n \}\)中的项,故\(D\)正确. 故选:\(ABD\).

答案 \((1,2]\) 解析 由角\(A\),\(B\),\(C\)成等差数列,得\(2B=A+C\), 又\(A+B+C=π\),得\(3B=π\),故 \(B=\dfrac{\pi}{3}\), 所以 \(\dfrac{a+c}{b}=\dfrac{\sin A+\sin C}{\sin B}=\dfrac{2}{\sqrt{3}}(\sin A+\sin C)\), 记 \(y=\sin A+\sin C\),又 \(A+C=\dfrac{2 \pi}{3}\), 所以 \(y=\sin A+\sin \left(\dfrac{2 \pi}{3}-A\right)=\sin A+\dfrac{\sqrt{3}}{2} \cos A+\dfrac{1}{2} \sin A\) \(=\dfrac{3}{2} \sin A+\dfrac{\sqrt{3}}{2} \sin A=\sqrt{3} \sin \left(A+\dfrac{\pi}{6}\right)\), 由 \(A \in\left(0, \dfrac{2 \pi}{3}\right)\),得 \(A+\dfrac{\pi}{6} \in\left(\dfrac{\pi}{6}, \dfrac{5 \pi}{6}\right)\), 故 \(\sin \left(A+\dfrac{\pi}{6}\right) \in\left(\dfrac{1}{2}, 1\right]\), 所以 \(y=\sqrt{3} \sin \left(A+\dfrac{\pi}{6}\right) \in\left(\dfrac{\sqrt{3}}{2}, \sqrt{3}\right]\), 所以 \(\dfrac{a+c}{b} \in(1,2]\).

答案 \(-\dfrac{1}{2}\) 解析 \(\because a_1=1\),\(a_n=3a_{n-1}+3^n-1(n\in N^*,n≥2)\), \(\therefore a_n-\dfrac{1}{2}=3(a_{n-1}-\dfrac{1}{2})+3^n\), 两边同时除以\(3^n\)可得, \(\dfrac{a_n-\dfrac{1}{2}}{3^n}=\dfrac{a_{n-1}-\dfrac{1}{2}}{3^{n-1}}+1\). \(\therefore\) 数列 \(\left\{\dfrac{a_n-\dfrac{1}{2}}{3^n}\right\}\)是等差数列,由题意可得,\(λ=-\dfrac{1}{2}\).

答案 (1)\(a_2=\dfrac{1}{3}\),\(a_3=\dfrac{1}{2}\); (2) 存在一个实常数\(λ=1\),使得数列\(\left\{\dfrac{1}{a_n-\lambda}\right\}\)是等差数列. 解析 (1)\(a_2=\dfrac{1}{3}\),\(a_3=\dfrac{1}{2}\); (2)假设存在一个实常数\(λ\),使得数列\(\left\{\dfrac{1}{a_n-\lambda}\right\}\)为等差数列, 则\(\dfrac{1}{a_1-\lambda}, \dfrac{1}{a_2-\lambda}, \dfrac{1}{a_3-\lambda}\)成等差数列, 所以\(\dfrac{2}{a_2-\lambda}=\dfrac{1}{a_1-\lambda}+\dfrac{1}{a_3-\lambda}\), 所以\(\dfrac{2}{\dfrac{1}{3}-\lambda}=\dfrac{1}{0-\lambda}+\dfrac{1}{\dfrac{1}{2}-\lambda}\),解之得\(λ=1\). 因为\(\dfrac{1}{a_{n+1}-1}-\dfrac{1}{a_n-1}=\dfrac{1}{\dfrac{1+a_n}{3-a_n}-1}-\dfrac{1}{a_n-1}\)\(=\dfrac{3-a_n}{2\left(a_n-1\right)}-\dfrac{1}{a_n-1}=\dfrac{1-a_n}{2\left(a_n-1\right)}=-\dfrac{1}{2}\), 又\(\dfrac{1}{a_1-1}=-1\), 所以存在一个实常数\(λ=1\),使得数列 \(\left\{\dfrac{1}{a_n-\lambda}\right\}\)是首项为\(-1\),公差为\(-\dfrac{1}{2}\)的等差数列.  

【C组---拓展题】

1.已知等差数列\(\{a_n \}\)中,\(a_1^2+a_6^2=8\),则\(a_2+a_4\)的取值范围是(  )  A. \(\left[-\dfrac{2}{5}, \dfrac{2}{5}\right]\) \(\qquad \qquad\) B. \(\left[-\dfrac{\sqrt{13}}{5}, \dfrac{\sqrt{13}}{5}\right]\) \(\qquad \qquad\) C. \(\left[-\dfrac{2 \sqrt{26}}{5}, \dfrac{2 \sqrt{26}}{5}\right]\) \(\qquad \qquad\) D. \(\left[-\dfrac{4 \sqrt{26}}{5}, \dfrac{4 \sqrt{26}}{5}\right]\)  

2.已知数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),\(a_1=1\),\(a_n≠0\),\(a_n a_{n+1}=λS_n-1\),其中\(λ\)为常数.   (1)证明:\(a_{n+2}-a_n=λ\);   (2)是否存在λ,使得\(\{a_n \}\)为等差数列?并说明理由.    

参考答案

答案 \(D\) 解析 设等差数列\(\{a_n \}\)的公差为\(d\)\(a_6=a_1+5d\), \(\because a_1^2+a_6^2=8,\therefore a_1^2+(a_1+5d)^2=8\), 故令\(a_1=2 \sqrt{2} \cos \theta\), \(a_1+5 d=2 \sqrt{2} \sin \theta\), 则\(d=\dfrac{1}{5}(2 \sqrt{2} \sin \theta-2 \sqrt{2} \cos \theta)\), \(a_2+a_4=2 a_1+4 d=4 \sqrt{2} \cos \theta+\dfrac{4}{5}(2 \sqrt{2} \sin \theta-2 \sqrt{2} \cos \theta)\)\(=2 \sqrt{2}\left(\dfrac{6}{5} \cos \theta+\dfrac{4}{5} \sin \theta\right)\), 且\(2 \sqrt{2} \cdot \sqrt{\left(\dfrac{6}{5}\right)^2+\left(\dfrac{4}{5}\right)^2}=\dfrac{4 \sqrt{26}}{5}\), 故\(-\dfrac{4 \sqrt{26}}{5} \leq a_2+a_4 \leq \dfrac{4 \sqrt{26}}{5}\), 故选:\(D\).

答案 (1)略;(2) 存在\(λ=4\)使得数列\(\{a_n \}\)为等差数列. 解析 (1)证明:\(\because a_n a_{n+1}=λS_n-1\), \(\therefore a_{n+1} a_{n+2}=λS_{n+1}-1\), 两式相减可得\(a_{n+1} (a_{n+2}-a_n)=λa_{n+1}\), \(\because a_{n+1}≠0\),\(\therefore a_{n+2}-a_n=λ\). (2)解:\(\because a_n a_{n+1}=λS_n-1\) , \(\therefore a_1 a_2=λS_1-1⇒a_2=λ-1\) \(\because a_{n+2}-a_n=λ\) ,\(\therefore a_3=a_1+λ=λ+1\) 假设存在\(λ\),使得\(\{a_n \}\)为等差数列,则\(a_1,a_2,a_3\)成等差数列, 即\(2a_2=a_1+a_3\), \(\therefore 2(λ-1)=1+λ+1\),解得\(λ=4\), 故\(a_{n+2}-a_n=4\), 可知数列\(\{a_n \}\)中偶数项可组成首项为\(a_2=3\),公差为\(4\)的等差数列, 即\(a_{2n}=3+4(n-1)=4n-1=2\cdot (2n)-1\); 数列\(\{a_n \}\)中奇数项可组成首项为\(a_1=1\),公差为\(4\)的等差数列, 即 \(a_{2 n-1}=1+4(n-1)=4 n-3=2 \cdot(2 n-1)-1\); 所以\(a_n=2n-1\), 则\(a_{n+1}-a_n=2\), 因此存在\(λ=4\)使得数列\(\{a_n \}\)为等差数列.  



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有