MPC模型预测控制器 您所在的位置:网站首页 模型预测控制优点PI控制 MPC模型预测控制器

MPC模型预测控制器

2023-11-27 14:59| 来源: 网络整理| 查看: 265

参考如下链接:

一个模型预测控制(MPC)的简单实现

建模例子详解

对于以下控制模型:

x ( k + 1 ) = A x ( k ) + B u ( k ) x(k+1)=A x(k)+B u(k) x(k+1)=Ax(k)+Bu(k)

注:需要注意对应的输入矩阵和状态矩阵每个矩阵的维度

x矩阵:n*1

A矩阵:n*n

B矩阵:n*p

u矩阵:p*1

写成矩阵格式:

[ x 1 ( k + 1 ) x 2 ( k + 1 ) ] = [ 1 0.1 0 2 ] [ x 1 ( k ) x 2 ( k ) ] + [ 0 0.5 ] u ( k ) \left[\begin{array}{l}x_{1}(k+1) \\x_{2}(k+1)\end{array}\right]=\left[\begin{array}{cc}1 & 0.1 \\0 & 2\end{array}\right]\left[\begin{array}{l}x_{1}(k) \\x_{2}(k)\end{array}\right]+\left[\begin{array}{c}0 \\0.5\end{array}\right] u(k) [x1​(k+1)x2​(k+1)​]=[10​0.12​][x1​(k)x2​(k)​]+[00.5​]u(k)

此处的 x 1 x_{1} x1​和 x 2 x_{2} x2​可以理解为误差项

X ( k ) = [ x ( k ∣ k ) x ( k + 1 ∣ k ) ⋮ x ( k + j ∣ k ) ⋮ x ( k + N ∣ k ) ] X(k)=\left[\begin{array}{c}x(k \mid k) \\x(k+1 \mid k) \\\vdots\\ x(k+j \mid k)\\\vdots \\x(k+N \mid k)\end{array}\right] X(k)=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎡​x(k∣k)x(k+1∣k)⋮x(k+j∣k)⋮x(k+N∣k)​⎦⎥⎥⎥⎥⎥⎥⎥⎥⎤​ U ( k ) = [ u ( k ∣ k ) u ( k + 1 ∣ k ) ⋮ u ( k + i ∣ k ) ⋮ u ( k + N − 1 ∣ k ) ] U(k)=\left[\begin{array}{c}u(k \mid k) \\u(k+1 \mid k) \\\vdots\\ u(k+i \mid k)\\\vdots \\u(k+N-1 \mid k)\end{array}\right] U(k)=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎡​u(k∣k)u(k+1∣k)⋮u(k+i∣k)⋮u(k+N−1∣k)​⎦⎥⎥⎥⎥⎥⎥⎥⎥⎤​

矩阵的维度

U(k) → NP1

X(k) → (N+1)n*1

对于MPC矩阵:

x k = M x k + C u k x_{k}=M x_{k}+C u_{k} xk​=Mxk​+Cuk​

M = [ I n × n A n × n A n 2 ⋮ A N ] M=\left[\begin{array}{c}I_{n \times n} \\A_{n \times n} \\A_{n}^{2} \\\vdots \\A^{N}\end{array}\right] M=⎣⎢⎢⎢⎢⎢⎡​In×n​An×n​An2​⋮AN​⎦⎥⎥⎥⎥⎥⎤​ C = [ 0 0 … 0 ⋮ … ⋮ ⋮ 0 0 0 0 … 0 B n × p 0 … 0 A B n × p B ⋮ 0 ⋮ ⋮ B ] C=\left[\begin{array}{cccc} 0 & 0 & \ldots & 0 \\ & \vdots & \ldots & \vdots \\ \vdots & 0 & & 0 \\ 0 & & 0 & \ldots & 0 \\ B_{n \times p} & 0 & \ldots & 0 \\ A B_{n \times p} & B & \vdots & 0 \\ \vdots & \vdots & & B \end{array}\right] C=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡​0⋮0Bn×p​ABn×p​⋮​0⋮00B⋮​……0…⋮​0⋮0…00B​0​⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤​

矩阵的维度

M → (N+1)nn

X(k) → (N+1)nN*P

X ( k ) = [ x ( k ∣ k ) x ( k + 1 ∣ k ) x ( k + 2 ∣ k ) x ( k + 3 ∣ k ) ] = [ x 1 ( k ∣ k ) x 2 ( k ∣ k ) x 1 ( k + 1 ∣ k ) x 2 ( k + 1 ∣ k ) x 1 ( k + 2 ∣ k ) x 2 ( k + 2 ∣ k ) x 1 ( k + 3 ∣ k ) x 2 ( k + 3 ∣ k ) ] X(k)=\left[\begin{array}{c}x(k \mid k) \\x(k+1 \mid k) \\x(k+2 \mid k) \\x(k+3 \mid k)\end{array}\right]=\left[\begin{array}{c}x_{1}(k \mid k) \\x_{2}(k \mid k) \\x_{1}(k+1 \mid k) \\x_{2}(k+1 \mid k) \\x_{1}(k+2 \mid k) \\x_{2}(k+2 \mid k) \\x_{1}(k+3 \mid k) \\x_{2}(k+3 \mid k)\end{array}\right] X(k)=⎣⎢⎢⎡​x(k∣k)x(k+1∣k)x(k+2∣k)x(k+3∣k)​⎦⎥⎥⎤​=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡​x1​(k∣k)x2​(k∣k)x1​(k+1∣k)x2​(k+1∣k)x1​(k+2∣k)x2​(k+2∣k)x1​(k+3∣k)x2​(k+3∣k)​⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤​

U ( k ) = [ u ( k ∣ k ) u ( k + 1 ∣ k ) u ( k + 2 ∣ k ) ] = [ u ( k ∣ k ) u ( k + 1 ∣ k ) u ( k + 2 ∣ k ) ] U(k)=\left[\begin{array}{c}u(k \mid k) \\u(k+1 \mid k) \\u(k+2 \mid k)\end{array}\right]=\left[\begin{array}{c}\frac{u(k \mid k)}{u(k+1 \mid k)} \\u(k+2 \mid k)\end{array}\right] U(k)=⎣⎡​u(k∣k)u(k+1∣k)u(k+2∣k)​⎦⎤​=[u(k+1∣k)u(k∣k)​u(k+2∣k)​]

计算出M矩阵和C矩阵(此处省略计算过程)

之后构建二次规划模式(cost function)

J = ∑ k = 0 N − 1 x ( k + i ∣ k ) T Q x ( k + i ∣ k ) + u ( k + i ∣ k ) T R u ( k + i ∣ k ) + x ( k + N ∣ k ) T F x ( k + i ∣ k ) J=\sum_{k=0}^{N-1} x(k+i \mid k)^{T} Q x(k+i \mid k)+u(k+i \mid k)^{T} R u(k+i \mid k)+x(k+N \mid k)^{T} F x(k+i \mid k) J=k=0∑N−1​x(k+i∣k)TQx(k+i∣k)+u(k+i∣k)TRu(k+i∣k)+x(k+N∣k)TFx(k+i∣k)

Q、R、F表示对应输入输出的权重系数矩阵

矩阵的维度

Q → n*n

R → 1*1

F → n*n

Q矩阵影响x变量的相关性,R矩阵跟输入相关,F矩阵跟终值相关

x ( k + N ∣ k ) T F x ( k + i ∣ k ) x(k+N \mid k)^{T} F x(k+i \mid k) x(k+N∣k)TFx(k+i∣k)与系统对应的终值状态相关

简化上面的 cost function 矩阵

J = x ( k ) T G x ( k ) + U ( k ) T H U ( k ) + 2 x ( k ) T E U ( k ) J=\boldsymbol{x}(k)^{T} \boldsymbol{G} \boldsymbol{x}(k)+\boldsymbol{U}(k)^{T} \boldsymbol{H} \boldsymbol{U}(k)+2 \boldsymbol{x}(k)^{T} \boldsymbol{E} \boldsymbol{U}(k) J=x(k)TGx(k)+U(k)THU(k)+2x(k)TEU(k)

该矩阵只包含了输入项和已知的初始输入项x(k)

G = M T Q ˉ M E = C T Q ˉ M H = C T Q ˉ C + R ˉ \begin{aligned}&G=M^{T} \bar{Q} M \\&E=C^{T} \bar{Q} M \\&H=C^{T} \bar{Q} C+\bar{R}\end{aligned} ​G=MTQˉ​ME=CTQˉ​MH=CTQˉ​C+Rˉ​

Q ˉ \bar{Q} Qˉ​和 R ˉ \bar{R} Rˉ表示上面式子中的Q和R矩阵的增广形式

G、H、E矩阵跟上面的M和C矩阵相关

Q ‾ = [ Q ⋯ ⋮ Q ⋮ ⋯ F ] R ‾ = [ R ⋯ ⋮ ⋱ ⋮ ⋯ R ] \overline{\boldsymbol{Q}}=\left[\begin{array}{ccc}\boldsymbol{Q} & \cdots & \\\vdots & \boldsymbol{Q} & \vdots \\& \cdots & \boldsymbol{F}\end{array}\right] \quad \overline{\boldsymbol{R}}=\left[\begin{array}{ccc}\boldsymbol{R} & \cdots & \\\vdots & \ddots & \vdots \\& \cdots & R\end{array}\right] Q​=⎣⎢⎡​Q⋮​⋯Q⋯​⋮F​⎦⎥⎤​R=⎣⎢⎡​R⋮​⋯⋱⋯​⋮R​⎦⎥⎤​

MATLAB代码详解 函数体

main.m

% 矩阵输入部分 A = input('Input Matrix (row n; col n) A='); B = input('Input Matrix (row n; col p) B='); N = input('Input Prediction Section N='); x_k = input('Input Initial State Matrix (row n; col 1) x_k='); Q = input('Input Matrix (row n; col n) Q='); R = input('Input Matrix (row 1; col 1) R='); F = input('Input Matrix (row n; col n) F='); MPC_Zero_Ref(A,B,N,x_k,Q,R,F);

MPC_Zero_Ref.m

function [M,C,Q_bar,R_bar,G,E,H,U_k] = MPC_Zero_Ref(A,B,N,x_k,Q,R,F) n = size(A,1); % A是n*n矩阵,得到n p = size(B,2); % B是n*p矩阵,得到p % 初始化M矩阵,M矩阵是(N+1)*n*n的 % M矩阵上面是一个n*n的I矩阵,这一步先把矩阵下半部分初始化为0 M = [eye(n); zeros(N*n, n)]; % 初始化C矩阵,这一步令它有(N+1)*N*P个0 C = zeros((N+1)*n, N*p); tmp = eye(n); % 定义一个n*n的I矩阵 for i = 1:N % 循环N次 rows = i*n+(1:n); % 定义当前行数,从i*n开始,共n行 C(rows, :) = [tmp*B, C(rows-n, 1:end-p)]; % 将C矩阵填满 tmp = A*tmp; % 每一次将tmp左乘一次 M(rows, :) = tmp; % 将M矩阵填满 end % 定义Q_bar S_q = size(Q, 1); % 输出Q的维度 S_r = size(R, 1); % 输出R的维度 Q_bar = zeros((N+1)*S_q, (N+1)*S_r); % 初始化Q_bar为全0矩阵 for i = 0:N % 循环N+1次 % 将Q写到Q_bar对角线上 Q_bar(i*S_q+1:(i+1)*S_q, i*S_q+1:(i+1)*S_q) = Q; end Q_bar(N*S_q+1:(N+1)*S_q, N*S_q+1:(N+1)*S_q) = F; % 定义R_bar R_bar = zeros(N*S_r, N*S_r); for i = 0:N-1 R_bar(i*S_r+1:(i+1)*S_r, i*S_r+1:(i+1)*S_r) = R; end % 求解G、E、H G = M'*Q_bar*M; E = C'*Q_bar*M; H = C'*Q_bar*C+R; % 最优化 f = (x_k'*E')'; % 定义f矩阵 U_k = quadprog(H, f); % 求解最优化U_k end 输入举例


【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有